Past Differentiation...

The differentiation rules we’ve learned so far:

1. Power Rule:

2. Sum Rule:

3. Difference Rule:

4. Product Rule:

5. Quotient Rule:

Motivation!

Questions

1. With the tools we have, how do we find \(\frac{d}{dx}(x^3 + 1)^3 \)? Is there any easier way?

2. (a) (From the coursepack): Let \(L(E) \) be the life expectancy (years) of a person with \(E \) years of education. Let \(E(i) \) be the average number of years of education obtained by people whose parents have an average annual income of \(i \) dollars. Describe the function \(L(E(i)) \) in practical terms. Include units in your answer.

 (b) What are the units of \(\frac{dL}{dE}, \frac{dE}{di}, \) and \(\frac{dL}{di} \)?
The Chain Rule

More general question: How do we differentiate the composition of two functions (functions inside of functions)?

The Chain Rule
If \(f(x) \) and \(g(x) \) are differentiable, then

\[
\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)
\]

If we let \(z = g(x) \) and \(y = f(z) \), then \(y = f(g(x)) \) and we can write the chain rule in the following way:

\[
\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx}
\]

Questions Differentiate the functions below:

1. \((x^3 + 1)^3\) (How does this compare to our answer above?)

2. \((x^2 + 1)^{100}\)

3. Find \(\frac{d}{dx}(8x^2 + 2)^7\).

4. Find \(\frac{d}{dx}\left(\frac{1}{x^2} + x + 1\right)^3\).
5. Find \(\frac{d}{dx} \left(\frac{(2x+3)^2}{(x+1)^3} \right)^{\frac{3}{2}} \).

Question A new proof of the quotient rule using the chain and product rules:

Question Find the equation of the tangent line to \(f(x) = \left(\frac{2}{x} - 1 \right)^3 \) at the point where \(x = 3 \).

Question The Triple Chain Rule: What about the composition of three functions, \(f(g(h(x))) \)? How would we differentiate that?