And Once Again, The Past...

1. The derivative of a function \(f(x) \) is

2. A function is continuous at a point \(x = a \) if

Differentiability

Question If we zoom in far enough near any point of the graph of the function \(f(x) = x^2 \), the graph looks like a ________ _______

Question What about \(f(x) = |x| \) near 0? Do we get the same thing? What is going on?

A function \(f \) is *differentiable* at a point \(a \) if the \(\frac{f(a+h) - f(a)}{h} \) exists and is finite at \(x = a \). In other words, \(f(x) \) is differentiable at \(x = a \) if

\[
\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
\]

exists and is finite.

Questions

1. Show from the definition that the following functions are not differentiable at \(x = 0 \):

 (a) \(f(x) = |x| \)

 (b) \(f(x) = x^{\frac{1}{3}} \)
(c) \(f(x) = \begin{cases}
-1 & \text{if } x > 0 \\
1 & \text{if } x \leq 0
\end{cases} \)

2. What can cause a function not to be differentiable at a point \(x = a \)? Draw an example of each.

- If the function

- If the function

- If the function

Continuity and Differentiability

Theorem If \(f(x) \) is \(\underline{\text{ }} \) at a point \(x = a \), then \(f(x) \) is \(\underline{\text{ }} \) at \(x = a \).

Questions

1. Fill in the following blanks with the words “continuous” and “differentiable”:

- If \(f(x) \) is not \(\underline{\text{ }} \) at \(x = a \), it is not \(\underline{\text{ }} \) at \(x = a \).

- If \(f(x) \) is \(\underline{\text{ }} \) at \(x = a \), it is \(\underline{\text{ }} \) at \(x = a \).

- It is possible for \(f(x) \) to be \(\underline{\text{ }} \) at \(x = a \), but not \(\underline{\text{ }} \) at \(x = a \).
2. (a) Find \(f'(0) \) or explain why it does not exist if
\[
f(x) = \begin{cases}
4 - x^2 & \text{if } x > 0 \\
x^2 - 4 & \text{if } x \leq 0
\end{cases}
\]

(b) Find \(f'(0) \) or explain why it does not exist if
\[
f(x) = \begin{cases}
4 - x^2 & \text{if } x > 0 \\
x^2 + 4 & \text{if } x \leq 0
\end{cases}
\]

3. Find \(f'(0) \) or explain why it does not exist if \(f(x) = (x + |x|)^2 + 1 \).
 (Hint: Write \(|x| \) as a piecewise function!)
4. Find a and b such that the following function is differentiable everywhere:

$$f(x) = \begin{cases}
 ax^3 & \text{if } x \leq 2 \\
 x^2 + b & \text{if } x > 2
\end{cases}$$

(Hint: First make $f(x)$ continuous, then differentiate...)