Transforming Functions by Addition

1. Suppose $f(x) = x^2$. Then write out expressions for:

 (a) $f(x) + 2$

 (b) $f(x + 2)$

2. On the axes below, draw the graphs of $f(x)$, $y = f(x) + 2$ and $y = f(x + 2)$. Label your graphs and axes.

3. Fill in the blanks:

 (a) If we start from the graph of a function $f(x)$, the graph of the function $f(x) + a$ has exactly the same shape, but is shifted __________ by ______ units.

 (b) If we start from the graph of a function $f(x)$ the graph of the function $f(x + a)$ has exactly the same shape, but is shifted __________ by ______ units.

4. Given the graph of a function $f(x)$ below, draw the functions $f(x + 3)$ and $f(x) - 8$ on the same axes.
Transforming Functions by Multiplication

1. Suppose \(f(x) = x(x - 1)(x + 1) \). Then write out expressions for:

 (a) \(f(2x) \)
 (b) \(2f(x) \)

2. On the axes below, draw the graphs of \(f(x) \), \(f(2x) \) and \(2f(x) \). Label your axes and graphs.

3. Fill in the blanks:

 (a) If we start from the graph of a function \(f(x) \), the graph of the function \(af(x) \) has the same shape, but is stretched ________ by a factor of ______.

 (b) If we start from the graph of a function \(f(x) \) the graph of the function \(f(ax) \) has exactly the same shape, but is stretched ________ by a factor of ______.

4. Given the graph of a function \(f(x) \) below, draw the functions \(f(2x) \) and \(2f(x) \) on the same axes.
Function Reflections

1. Suppose \(f(x) = x(x - 1) \). Then write out expressions for:

 (a) \(f(-x) \)

 (b) \(-f(x)\)

2. On the axes below, draw the graphs of \(f(x) \), \(-f(x)\) and \(f(-x)\). Label your axes and graphs.

3. Fill in the blanks:

 (a) If we start from the graph of a function \(f(x) \), the graph of the function \(-f(x)\) is the same graph, but \[\underline{\quad}\] in the \[\underline{\quad}\]-axis.

 (b) If we start from the graph of a function \(f(x) \), the graph of the function \(f(-x) \) is the same graph, but \[\underline{\quad}\] in the \[\underline{\quad}\]-axis.

4. Given the graph of the function \(f(x) \) below, draw the functions \(-f(x)\) and \(f(-x)\) on the same axes.

-4 -2 2 4

-20 20
Putting it all Together

Question Consider the graph of $f(x)$ in the previous question.

1. Can you figure out a possible formula for it? (Hint: think back to polynomials.)

2. Write down a formula for $f(2(x - 1))$. Simplify it, but do not FOIL. What are the roots of $f(2(x - 1))$?

3. On the axes below, draw the graphs of $f(x)$ and $f(2(x - 1))$.

4. By considering the zeros of $f(x)$ in part (1), of $f(2(x - 1))$ in part (2), and the graphs in part (3), decide which of the following statements is true and which is false:

 (a) To get from $f(x)$ to $f(2(x - 1))$ you first compress along the x-axis by a factor of 2, then shift to the right by 1.

 (b) To get from $f(x)$ to $f(2(x - 1))$ you first shift to the right by 1, then compress along the x-axis by a factor of 2.

Question Given a graph of $f(x)$, describe how you would go about drawing the graph of $f(6x - 3)$.
Question Given the graph of $f(x)$ below, draw the graph of $-2f(0.5x) - 3$. (Hint: you might want to do this step-by-step using the axes below. Be sure to label each with what you’re drawing!) As a bonus: can you identify (with a formula) the function you get at the end? Can you use that to identify the function of the original graph?