Exam 2 Practice

THE FOLLOWING INSTRUCTIONS WILL BE ON THE TEST:

- Do not open this test booklet until you are directed to do so.
- You will have 50 minutes to complete the exam. If you finish early go back and check your work.
- This exam is closed book, but you may use a one-sided sheet of notes in your own handwriting.
- You may use a calculator for arithmetical purposes only.
- Throughout the exam, show your work so that your reasoning is clear. Otherwise no credit will be given. Circle your answers.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.

- 1. Consider the matrix $A = \begin{pmatrix} 3 & -3 \\ 3 & 1 \\ 3 & 5 \\ 3 & 1 \end{pmatrix}$. Note that $\vec{v} = [2, 4, 6, 8]^T \notin C(A)$.
 - (a) Use Gram-Schmidt to find the QR decomposition of A. You should get $Q=\begin{pmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & 0 \end{pmatrix}$.

(b) Find the least squares solution \hat{x} of $A\vec{x} = \vec{v}$, using your QR decomposition above or otherwise.

(c) Find the projection \vec{p} of \vec{v} onto C(A). (Hint: you only need to multiply one matrix by one vector!)

(d) Consider the matrix $[A|I_4]$, A with the 4×4 identity matrix adjoined. If I carry out Gram-Schmidt on this matrix, the first two columns will be v_1 and v_2 as above. Describe the other four columns. Be sure to refer to (an)other fundamental space(s) of A, and explain your answers.

2. Suppose that V and W are subspaces of \mathbb{R}^n with dim(V) + dim(W) > n. Show that $dim(V \cap W) > 0$. You may not use any formulas that have not been covered in class.

3. (a) Construct a matrix A with the vectors $[1,0,1]^T$ and $[0,1,1]^T$ in its row space and $[1,0,1]^T$ in its left nullspace.

(b) Find bases for each of the column space and null space of the matrix A in part (a).

- 4. Determine if each of the following statements is true or false. If it is true, explain why. If it is false, give a counterexample.
 - (a) If $C(A) = C(A^T)$, then $A = A^T$ (i.e. if a matrix has the same row and column spaces, it is symmetric.)

(b) If Q is a matrix with orthonormal columns, then $QQ^T=I.$

5. The columns of the matrix $\frac{1}{3}\begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}$ form an orthonormal basis (or frame) of \mathbb{R}^3 . Find the coordinates of $\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ in this frame.