Exam 1 - Practice

These instructions will be on the test:

- Do not open this test booklet until you are directed to do so.
- You will have 50 minutes to complete the exam. If you finish early go back and check your work.
- This exam is closed book.
- You may use a calculator for arithmetic purpose only. No calculator matrix computations are allowed.
- Throughout the exam, show your work so that your reasoning is clear. Otherwise no credit will be given. Circle your answers.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Name: __________________________
1. (25 points) Consider the matrix

\[
A = \begin{pmatrix}
1 & 2 & 5 & 0 \\
1 & 2 & 4 & 2 \\
0 & -1 & 0 & 8 \\
-1 & -3 & -1 & -1
\end{pmatrix}.
\]

The goal of this question is to solve the equation \(A\vec{x} = [12, 1, -30, 6]^T \).

(a) Carry out Gaussian reduction with maximal partial pivoting to show that the upper triangular component of the \(PA = LU \) decomposition is

\[
U = \begin{pmatrix}
1 & 2 & 5 & 0 \\
0 & -1 & 0 & 8 \\
0 & 0 & 4 & -9 \\
0 & 0 & 0 & \frac{1}{4}
\end{pmatrix},
\]

and find the \(L \) and \(P \) components. You may want to augment \(A \) with the vector above to make the next part of this question easier.
(b) Suppose that $A\vec{x} = [12, 1, -30, 6]^T$. Find \vec{x}.

2. (5 points) Consider the matrix $B = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 7 & 1 \\ 2 & 4 & 1 \end{pmatrix}$. Is B invertible? If so, find its inverse. If not, explain why.
3. (15 points) Consider the matrix
\[
D = \begin{pmatrix}
1 & 2 & 3 & 2 & 14 & 9 \\
0 & 0 & 0 & 2 & 10 & 6 \\
0 & 0 & 0 & 0 & 0 & 3
\end{pmatrix}.
\]

Note that this matrix is in row echelon form.

(a) Fill in the blanks:
 i. The column space \(C(D) \) is a _____ dimensional subspace of \(\mathbb{R}^m \), where \(m = ____ \).
 ii. The nullspace \(N(D) \) is a _____ dimensional subspace of \(\mathbb{R}^n \), where \(n = ____ \).

(b) Write down a basis for \(C(D) \).

(c) Compute the row-reduced echelon form of \(D \).

(d) Find a basis for \(N(D) \).

(e) Let \(\vec{x}_p \) be the particular solution of \(D\vec{x} = \vec{c} \) for some \(\vec{c} \in C(D) \). Write down an expression giving all possible solutions of this equation.
4. (5 points)

(a) Briefly explain why for any two matrices E and F, the column space of EF is contained in the column space of E.

(b) Find a matrix F with no zero entries such that the column space of EF is not equal to the column space of E. You do not need to compute the column spaces of either matrix in order to answer this question, but you can use the following matrix if you wish:

$$E = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & 4 \\ 0 & 0 & 7 \end{pmatrix}.$$