Page 242

4. (a) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. Any non-square matrix with orthonormal columns will do.
(b) Any vector and the the zero vector.
(c) $\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$. There are many other answers.
5. (a) If $c_{1} \overrightarrow{q_{1}}+c_{2} \overrightarrow{q_{2}}+c_{3} \overrightarrow{q_{3}}=\overrightarrow{0}$, and the q_{i} 's are orthonormal, then by taking dot product with q_{1}, we get $c_{1} \overrightarrow{q_{1}} \cdot \overrightarrow{q_{1}}+c_{2} \overrightarrow{q_{2}} \cdot \overrightarrow{q_{1}}+c_{3} \overrightarrow{q_{3}} \cdot \overrightarrow{q_{1}}=\overrightarrow{0} \cdot \overrightarrow{q_{1}} \Rightarrow c_{1}=0$. Similarly, by taking dot products with q_{2} and q_{3}, we get that $c_{2}=c_{3}=0$.
(b) If $Q \vec{x}=\overrightarrow{0}$, then $Q^{T} Q \vec{x}=Q^{T} \overrightarrow{0}=\overrightarrow{0}$. Since Q is orthonormal, $Q^{T} Q=I$, so we get $\vec{x}=\overrightarrow{0}$.
6. (a) First normalize \vec{a} to get $q_{1}=\frac{1}{10}\left(\begin{array}{l}1 \\ 3 \\ 4 \\ 5 \\ 7\end{array}\right)$. Then $v_{2}=\vec{b}-{\overrightarrow{q_{1}}}^{T} \vec{b} \overrightarrow{q_{1}}=\left(\begin{array}{c}7 \\ 3 \\ 4 \\ -5 \\ 1\end{array}\right)$. Normalize to get $q_{2}=\frac{1}{10}\left(\begin{array}{r}7 \\ 3 \\ 4 \\ -5 \\ 1\end{array}\right)$.
(b) We want to project $\vec{v}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$ onto the plane. Let $Q=\left[q_{1} \mid q_{2}\right]$. Then $P=Q Q^{T}=$ $\frac{1}{50}\left(\begin{array}{ccccc}25 & -9 & -12 & 20 & 0 \\ -9 & 9 & 12 & 0 & 12 \\ -12 & 12 & 16 & 0 & 16 \\ 20 & 0 & 0 & 25 & 15 \\ 0 & 12 & 16 & 15 & 25\end{array}\right)$. So $P \vec{v}=\frac{1}{50}\left(\begin{array}{c}25 \\ -9 \\ -12 \\ 20 \\ 0\end{array}\right)$.
7. (a) By GS on the matrix $\left[A \mid e_{1}\right]$ where e_{1} is $[1,0,0]^{T}$, we get $q_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right), q_{2}=\frac{1}{\sqrt{66}}\left(\begin{array}{l}7 \\ 1 \\ 4\end{array}\right)$, $q_{3}=\frac{1}{\sqrt{11}}\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)$.
(b) $q_{3} \in N\left(A^{T}\right)$.
(c) If $Q=\left[q_{1} \mid q_{2}\right]$, the least squares solution is $Q^{T}\left(\begin{array}{l}1 \\ 2 \\ 7\end{array}\right)=\binom{-11 \sqrt{6}}{\frac{37}{\sqrt{66}}}$.
8. Project \vec{b} onto $\vec{a}: \frac{\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 5 \\ 2 \\ 2\end{array}\right)}{\left(\begin{array}{l}4 \\ 5 \\ 2 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 5 \\ 2 \\ 2 \\ 2\end{array}\right)}\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)\left(\begin{array}{l}4 \\ 5 \\ 2 \\ 2\end{array}\right) \cdot \vec{q}_{1}=\frac{1}{7}\left(\begin{array}{l}4 \\ 5 \\ 2 \\ 2\end{array}\right), \vec{e}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right)-\frac{2}{7}\left(\begin{array}{l}4 \\ 5 \\ 2 \\ 2\end{array}\right)=\frac{1}{7}\left(\begin{array}{c}-1 \\ 4 \\ -4 \\ -4\end{array}\right)$.

This has length 1 , so it's also \vec{q}_{2}.
20. (a) True, since if Q is orthogonal, $Q^{T} Q=I$, so $Q^{-1}=Q^{T}$, which satisfies the same.
(b) True, since for any $\vec{x} \in \mathbb{R}^{2},|Q \vec{x}|^{2}=(Q \vec{x})^{T}(Q \vec{x})=\vec{x}^{T} Q^{T} Q \vec{x}=\vec{x}^{T} \vec{x}=|x|^{2}$.
23. $q_{1}=a_{1}, q_{2}=\frac{1}{3} a_{2}-\frac{2}{3} a_{1}, q_{3}=\frac{1}{5} v_{3}-\frac{2}{5} v_{2} . Q=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), R=\left(\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5\end{array}\right)$.
24. (a) A simple basis is $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$.
(b) Coefficients of the hyperplane form a basis: $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ -1\end{array}\right)$. (Or: append $[1,0,0,0]$ to the matrix formed by the basis above and do GS to get the same result.)
(c) $\overrightarrow{b_{1}}=\frac{1}{2}\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right)$, and $\overrightarrow{b_{2}}=\frac{1}{2}\left(\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right)$.
32. $Q_{1}=I-2\binom{0}{1}\left(\begin{array}{ll}0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-2\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \cdot Q_{2}=I-2\left(\begin{array}{c}0 \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right)\left(\begin{array}{lll}0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right)=$ $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)-2\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right)=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)$.
Note that Q_{1} reflects in the x axis, and Q_{2} reflects in the plane $y=-z$.

33. The only such matrix is the identity.
34. (a) $Q \vec{u}=I \vec{u}-2 \vec{u} \vec{u}^{T} \vec{u}=\vec{u}-2 \vec{u}=-\vec{u}$, where the second to last equality is true because $\vec{u}^{T} \vec{u}=1$.
(b) If $\vec{v} \perp \vec{u}$, then $Q \vec{v}=\vec{v}-2 \vec{u} \vec{u}^{T} \vec{v}=\vec{v}$, since $\vec{u}^{T} \vec{v}=0$.

