Page 242

- 4. (a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Any non-square matrix with orthonormal columns will do.
 - (b) Any vector and the the zero vector.
 - (c) $\frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. There are many other answers.
- 10. (a) If $c_1\vec{q_1} + c_2\vec{q_2} + c_3\vec{q_3} = \vec{0}$, and the q_i 's are orthonormal, then by taking dot product with q_1 , we get $c_1\vec{q_1} \cdot \vec{q_1} + c_2\vec{q_2} \cdot \vec{q_1} + c_3\vec{q_3} \cdot \vec{q_1} = \vec{0} \cdot \vec{q_1} \Rightarrow c_1 = 0$. Similarly, by taking dot products with q_2 and q_3 , we get that $c_2 = c_3 = 0$.
 - (b) If $Q\vec{x} = \vec{0}$, then $Q^TQ\vec{x} = Q^T\vec{0} = \vec{0}$. Since Q is orthonormal, $Q^TQ = I$, so we get $\vec{x} = \vec{0}$.
- 11. (a) First normalize \vec{a} to get $q_1 = \frac{1}{10} \begin{pmatrix} 1 \\ 3 \\ 4 \\ 5 \\ 7 \end{pmatrix}$. Then $v_2 = \vec{b} \vec{q_1}^T \vec{b} \vec{q_1} = \begin{pmatrix} 7 \\ 3 \\ 4 \\ -5 \\ 1 \end{pmatrix}$. Normalize to get

$$q_2 = \frac{1}{10} \begin{pmatrix} 7\\3\\4\\-5\\1 \end{pmatrix}.$$

(b) We want to project $\vec{v}=\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$ onto the plane. Let $Q=[q_1|q_2].$ Then $P=QQ^T=$

$$\frac{1}{50} \begin{pmatrix} 25 & -9 & -12 & 20 & 0 \\ -9 & 9 & 12 & 0 & 12 \\ -12 & 12 & 16 & 0 & 16 \\ 20 & 0 & 0 & 25 & 15 \\ 0 & 12 & 16 & 15 & 25 \end{pmatrix}. \text{ So } P\vec{v} = \frac{1}{50} \begin{pmatrix} 25 \\ -9 \\ -12 \\ 20 \\ 0 \end{pmatrix}.$$

15. (a) By GS on the matrix $[A|e_1]$ where e_1 is $[1,0,0]^T$, we get $q_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\2\\2 \end{pmatrix}$, $q_2 = \frac{1}{\sqrt{66}} \begin{pmatrix} 7\\1\\4 \end{pmatrix}$,

$$q_3 = \frac{1}{\sqrt{11}} \begin{pmatrix} 1\\3\\1 \end{pmatrix}.$$

(b) $q_3 \in N(A^T)$

(c) If
$$Q = [q_1|q_2]$$
, the least squares solution is $Q^T \begin{pmatrix} 1\\2\\7 \end{pmatrix} = \begin{pmatrix} -11\sqrt{6}\\\frac{37}{\sqrt{66}} \end{pmatrix}$.

16. Project
$$\vec{b}$$
 onto \vec{a} :
$$\frac{\begin{pmatrix} 1\\2\\0\\0 \end{pmatrix} \cdot \begin{pmatrix} 4\\5\\2\\2 \end{pmatrix}}{\begin{pmatrix} 4\\5\\2\\2 \end{pmatrix} \cdot \begin{pmatrix} 4\\5\\2\\2 \end{pmatrix}} = \frac{2}{7} \begin{pmatrix} 4\\5\\2\\2 \end{pmatrix}, \vec{q_1} = \frac{1}{7} \begin{pmatrix} 4\\5\\2\\2 \end{pmatrix}, \vec{e_1} = \begin{pmatrix} 1\\2\\0\\0 \end{pmatrix} - \frac{2}{7} \begin{pmatrix} 4\\5\\2\\2 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 1\\4\\-4\\4 \end{pmatrix}.$$

This has length 1, so it's also \vec{q}_2 .

- 20. (a) True, since if Q is orthogonal, $Q^TQ = I$, so $Q^{-1} = Q^T$, which satisfies the same.
 - (b) True, since for any $\vec{x} \in \mathbb{R}^2$, $|Q\vec{x}|^2 = (Q\vec{x})^T (Q\vec{x}) = \vec{x}^T Q^T Q \vec{x} = \vec{x}^T \vec{x} = |x|^2$.

23.
$$q_1 = a_1, q_2 = \frac{1}{3}a_2 - \frac{2}{3}a_1, q_3 = \frac{1}{5}v_3 - \frac{2}{5}v_2.$$
 $Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, R = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5 \end{pmatrix}.$

- 24. (a) A simple basis is $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$.
 - (b) Coefficients of the hyperplane form a basis: $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$. (Or: append [1,0,0,0] to the matrix formed by the basis above and do GS to get the same result.)

(c)
$$\vec{b_1} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}$$
, and $\vec{b_2} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

$$32. \ \ Q_1 = I - 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - 2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \ \ Q_2 = I - 2 \begin{pmatrix} 0 \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - 2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Note that Q_1 reflects in the x axis, and Q_2 reflects in the plane y = -z.

- 33. The only such matrix is the identity.
- 34. (a) $Q\vec{u} = I\vec{u} 2\vec{u}\vec{u}^T\vec{u} = \vec{u} 2\vec{u} = -\vec{u}$, where the second to last equality is true because $\vec{u}^T\vec{u} = 1$.
 - (b) If $\vec{v} \perp \vec{u}$, then $Q\vec{v} = \vec{v} 2\vec{u}\vec{u}^T\vec{v} = \vec{v}$, since $\vec{u}^T\vec{v} = 0$.