Page 190

4. When they exist, these are not usually unique.
(a) $\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)$.
(b) Impossible. This must be a 3×3 matrix, which means $\operatorname{dim}(C(A))+\operatorname{dim}(N(A))=3$.
(c) $\left(\begin{array}{ll}1 & 0\end{array}\right)$ (I think this really must be the simplest possible example).
(d) $\left(\begin{array}{rr}9 & 3 \\ 3 & -1\end{array}\right)$
(e) Impossible. Since $C(A)^{\perp}=N\left(A^{T}\right)$ and $C\left(A^{T}\right)^{\perp}=N(A)$, then if $C(A)=C\left(A^{T}\right)$, then $N(A)=N\left(A^{T}\right)$.
5. The combination $r_{3}-2 r_{2}+r_{1}=\overrightarrow{0}$. So multiples of $[1,-2,1]$ are in $N\left(A^{T}\right)$. Similarly, since $c_{3}-2 c_{2}+c_{1}=\overrightarrow{0}$, multiples of $[1,-2,1]$ are also in $N(A)$.
6. (a) True. These are both the rank of the matrix.
(b) False. Left nullspace of A^{T} is the nullspace of A, which lives in a different dimension than the left nullspace of A for any non-square matrix.
(c) False. Row space and column space are the same for any invertible matrix.
(d) True. This is trivially true if $A^{T}=A$, and multiplying the right side by -1 doesn't change the space spanned by the columns.

Page 203

9. If $A^{T} A \vec{x}=\overrightarrow{0}$, then $A \vec{x}=\overrightarrow{0}$. Reason: $A \vec{x}$ is in the nullspace of A^{T} and also in the column space of A and those spaces are orthogonal complements.
10. The RREF of $[A \mid B]$ is $\left(\begin{array}{cccc}1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$. So if $A=\left[c_{1} \mid c_{2}\right]$ and $B=\left[d_{1} \mid d_{2}\right]$, then $d_{1}=3 c_{1}+c_{2}$. So $d_{1}=\left(\begin{array}{l}5 \\ 6 \\ 5\end{array}\right)$ lies in both column spaces.
11. If S is spanned by $(1,2,2,3)$ and $(1,3,3,2)$, then S^{\perp} is spanned by $(0,-1,1,0)$ and $(-5,1,0,1)$. This is the same as solving $A \vec{x}=\overrightarrow{0}$ for $A=\left(\begin{array}{llll}1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2\end{array}\right)$ (i.e. finding the nullspace of this matrix.)
12. (a) Two planes in \mathbb{R}^{3} cannot be orthogonal. In this case, the vector $[1,-1,0]^{T}$ and its multiples form the intersection of the two planes.
(b) The orthogonal complement of a 2-D subspace of \mathbb{R}^{5} is 3-D, but there are only two basis vectors given.
(c) The subspaces spanned by $[1,0]^{T}$ and $[1,1]^{T}$ only intersect at the origin, but aren't orthogonal.
13. Since $C(B) \subseteq N(A)$, we get that $\operatorname{dim} C(B) \leq \operatorname{dim} N(A)$. A has four columns, so dim $N(A)+\operatorname{dim} C(A)=4$, so $\operatorname{dim} N(A)=4-\operatorname{dim} C(A)$. Putting these two together, we get dim $C(B) \leq 4-\operatorname{dim} C(A)$, so $\operatorname{dim} C(A)+\operatorname{dim} C(B) \leq 4$.

Page 215

2. (a) $\hat{x}=\frac{\vec{a}^{T} \vec{b}}{\vec{a}^{T} \vec{a}}=\frac{\left(\begin{array}{ll}1 & 0\end{array}\right)\binom{\cos \theta}{\sin \theta}}{\left(\begin{array}{ll}1 & 0\end{array}\right)\binom{1}{0}}=\cos \theta$. So $\vec{p}=\hat{x} \vec{a}=\cos \theta\binom{1}{0}=\binom{\cos \theta}{0}$.

(b) $\hat{x}=\frac{\vec{a}^{T} \vec{b}}{\vec{a}^{T} \vec{a}}=\frac{\left(\begin{array}{ll}1 & -1\end{array}\right)\binom{1}{1}}{\left(\begin{array}{ll}1 & -1\end{array}\right)\binom{1}{-1}}=0$. So $\vec{p}=0 \vec{a}=\binom{0}{0}$.

3. $P_{1}=\frac{1}{9}\left(\begin{array}{rrr}1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4\end{array}\right)$, and $P_{2}=\frac{1}{9}\left(\begin{array}{rrr}4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1\end{array}\right)$. Note that $P_{1} P_{2}=0$. This makes sense, because the vectors are orthogonal, so projecting onto one, then the other always gives the zero vector.
4. $\overrightarrow{p_{1}}=P_{1} \vec{b}=\frac{1}{9}\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right) ; \overrightarrow{p_{2}}=P_{2} \vec{b}=\frac{1}{9}\left(\begin{array}{c}4 \\ 4 \\ -2\end{array}\right) ; \overrightarrow{p_{3}}=P_{3} \vec{b}=\frac{1}{9}\left(\begin{array}{r}4 \\ -2 \\ 4\end{array}\right) \cdot p_{1}+p_{2}+p_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
5. $P_{3}=\frac{1}{9}\left(\begin{array}{ccc}4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4\end{array}\right)$. The three do indeed add up to I.
6. (a) $\vec{p}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right) ; \vec{e}=\left(\begin{array}{l}0 \\ 0 \\ 4\end{array}\right)$.
(b) $\vec{p}=\left(\begin{array}{l}4 \\ 4 \\ 6\end{array}\right) ; \vec{e}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
7. $P_{1}=\frac{1}{9}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), P_{2}=\frac{1}{9}\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right) . P_{1} \vec{b}=\frac{1}{9}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right) . P_{2}^{2}$ is indeed the identity.
8. $(I-P)^{2}=I-2 P+P^{2}=I-2 P+P=I-P$. When P projects on the column space of A, $I-P$ projects onto its left nullspace.
9. Two possible vectors are $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}0 \\ -2 \\ 1\end{array}\right)$. Then $P=\frac{1}{6}\left(\begin{array}{ccc}5 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & -2 & 2\end{array}\right)$.
10. The vector $\vec{e}=\left(\begin{array}{c}1 \\ -1 \\ -2\end{array}\right)$ (the vector of coefficients) is perpendicular to the plane. So $Q=\frac{\vec{e} \vec{e} T}{\vec{e}^{T} \vec{e}}=$ $\frac{1}{6}\left(\begin{array}{rrr}1 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 2 & 4\end{array}\right)$. So $P=I-Q=\frac{1}{6}\left(\begin{array}{ccc}5 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & -2 & 2\end{array}\right)$, as before.
11. $(I-P)^{2}=I^{2}-I P-P I+P^{2}=I-2 P+P=I-P$. When P projects onto the column space of $A, I-P$ projects onto the left nullspace of A.
12. You would take the dot product of $\vec{b}-\vec{p}$ with each of the \vec{a}_{i} 's. If all the dot products are zero, then \vec{p} is the orthogonal projection of \vec{b} onto the subspace spanned by the \vec{a}_{i} 's.

Page 229

1. $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 4 & 1\end{array}\right) . \vec{b}=\left(\begin{array}{c}0 \\ 8 \\ 8 \\ 20\end{array}\right)$. So $A^{T} A \hat{x}=\left(\begin{array}{cc}26 & 8 \\ 8 & 4\end{array}\right)$ and $A^{T} \vec{b}=\binom{112}{36} . \hat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}=$
$\binom{4}{1}$. So $\vec{p}=A \hat{x}=\left(\begin{array}{c}1 \\ 5 \\ 13 \\ 17\end{array}\right)$, and $E=|\vec{e}|^{2}=(\vec{b}-\vec{p})^{2}=44$.
2. $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16\end{array}\right) . \hat{x}=\left(A^{T} A\right)^{-1} A \vec{b}=\left(\begin{array}{c}2 \\ \frac{4}{3} \\ \frac{2}{3}\end{array}\right)$. Best fit parabola is $2+\frac{4}{3} x+\frac{2}{3} x^{2}$, and $\vec{p}=\left(\begin{array}{c}2 \\ 4 \\ 12 \\ 18\end{array}\right)$.

3. Consider the matrix $\left(\begin{array}{cc|c}1 & t_{1} & b_{1} \\ 1 & t_{2} & b_{2} \\ 1 & t_{3} & b_{3}\end{array}\right)$. The row echelon form of this is

$$
\left(\begin{array}{cc|c}
1 & t_{1} & b_{1} \\
0 & 1 & \frac{b_{2}-b_{1}}{t_{2}-t_{1}} \\
0 & 0 & \left(b_{3}-b_{1}\right)-\frac{b_{2}-b_{1}}{t_{2}-t_{1}}\left(t_{3}-t_{1}\right)
\end{array}\right)
$$

So we need $\left(b_{3}-b_{1}\right)-\frac{t_{3}-t_{1}}{t_{2}-t_{1}}\left(b_{2}-b_{1}\right)=0$, or

$$
\frac{b_{3}-b_{1}}{t_{3}-t_{1}}=\frac{b_{2}-b_{1}}{t_{2}-t_{1}} .
$$

That is, the slope between $\left(t_{1}, b_{1}\right)$ and $\left(t_{2}, b_{2}\right)$ must be the same as the slope between $\left(t_{1}, b_{1}\right)$ and $\left(t_{3}, b_{3}\right) \ldots$ which makes sense!
28. If the columns of A are not independent, find the row echelon form of A to figure out the pivot columns. Remove all free columns from A to create a matrix B with the same column space, but with full row rank. Then $P=B\left(B^{T} B\right)^{-1} B^{T}$ is the projection onto $C(B)=C(A)$.

Extra Problem

1. Create a matrix B that is A augmented by \vec{c}. Its RREF is $\left(\begin{array}{rrrrr}1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$. Since the last row is not all zeros, \vec{c} cannot be written as a linear combination of the columns of A, so it's not in $C(A)$.
2. $A^{T} A=\left(\begin{array}{rrrr}14 & 5 & 13 & 1 \\ 5 & 5 & -5 & 10 \\ 13 & -5 & 41 & -28 \\ 1 & 10 & -28 & 29\end{array}\right)$, and $A^{T} \vec{c}=[22,12,8,14]^{T}$.
3. We saw in part 1 of the question that A has rank 2 , so $N(A)$ is two-dimensional. Since we know that $N\left(A^{T} A\right)=N(A), N\left(A^{T} A\right) \neq\{\overrightarrow{0}\}$, so $A^{T} A \hat{x}=A^{T} \vec{c}$ does not have a unique solution.
4. Form the augmented matrix $\left[A^{T} A \mid A^{T} \vec{c}\right]$. Its RREF is $\left(\begin{array}{rrrrr}1 & 0 & 2 & -1 & 10 / 9 \\ 0 & 1 & -3 & 3 & 58 / 45 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. So $\hat{x}_{p}=$ $[10 / 9,58 / 45,0,0]^{T}=\frac{1}{45}[50,58,0,0]^{T}$. The special solutions of are $\hat{s}_{1}=[-2,3,1,0]^{T}$ and $\hat{s}_{2}=[1,-3,0,1]^{T}$, so the general solution of the normal equation is

$$
\hat{x}=\frac{1}{45}\left(\begin{array}{c}
50 \\
58 \\
0 \\
0
\end{array}\right)+c_{1}\left(\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
1 \\
-3 \\
0 \\
1
\end{array}\right) .
$$

5. $\vec{p}=A \hat{x}=\frac{1}{45}[-8,100,266]^{T}$, and $\vec{e}=\vec{c}-\vec{p}=\frac{1}{45}[8,-10,4]^{T}$.
6. Since A doesn't have full column rank, we can't just plug it into the formula for projection matrices. However, we can if we drop the two free columns (the $3^{\text {rd }}$ and $4^{\text {th }}$). If C is the matrix consisting of the two remaining pivot columns of A, then $C(A)=C(C)$, so $P=C\left(C^{T} C\right)^{-1} C^{T}=\frac{1}{45}\left(\begin{array}{rrr}29 & 20 & -8 \\ 20 & 20 & 10 \\ -8 & 10 & 41\end{array}\right)$.
7. The projection matrix onto $C\left(A^{T}\right)$ is the matrix $E\left(E^{T} E\right)^{-1} E^{T}$, where E is the matrix formed by the pivot columns of A^{T}. By taking the RREF of A^{T}, we see that the first two columns are pivot columns. So $E=\left(\begin{array}{rr}1 & 2 \\ -1 & 0 \\ 5 & 4 \\ -4 & -2\end{array}\right)$, giving $P=\left(\begin{array}{cccc}19 & 9 & 11 & 8 \\ 9 & 6 & 0 & 9 \\ 11 & 0 & 22 & -11 \\ 8 & 9 & -11 & 19\end{array}\right)$. This gives

$$
\hat{x}_{\text {row }}=P \hat{x}_{p}=\frac{1}{1485}\left(\begin{array}{c}
1472 \\
798 \\
550 \\
922
\end{array}\right)
$$

So we get

$$
\hat{x}=\frac{1}{1485}\left(\begin{array}{c}
1472 \\
798 \\
550 \\
922
\end{array}\right)+c_{1}\left(\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
1 \\
-3 \\
0 \\
1
\end{array}\right)
$$

