Page 190

- 4. When they exist, these are not usually unique.
 - (a) $\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (b) Impossible. This must be a 3×3 matrix, which means dim(C(A)) + dim(N(A)) = 3.
 - (c) (1 0) (I think this really must be the simplest possible example).
 - (d) $\begin{pmatrix} 9 & 3 \\ 3 & -1 \end{pmatrix}$
 - (e) Impossible. Since $C(A)^{\perp} = N(A^T)$ and $C(A^T)^{\perp} = N(A)$, then if $C(A) = C(A^T)$, then $N(A) = N(A^T)$.
- 18. The combination $r_3 2r_2 + r_1 = \vec{0}$. So multiples of [1, -2, 1] are in $N(A^T)$. Similarly, since $c_3 2c_2 + c_1 = \vec{0}$, multiples of [1, -2, 1] are also in N(A).
- 25. (a) True. These are both the rank of the matrix.
 - (b) False. Left nullspace of A^T is the nullspace of A, which lives in a different dimension than the left nullspace of A for any non-square matrix.
 - (c) False. Row space and column space are the same for any invertible matrix.
 - (d) True. This is trivially true if $A^T = A$, and multiplying the right side by -1 doesn't change the space spanned by the columns.

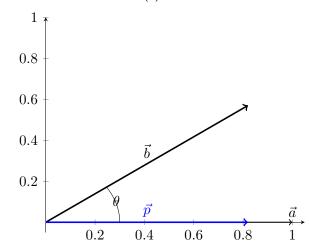
Page 203

- 9. If $A^T A \vec{x} = \vec{0}$, then $A \vec{x} = \vec{0}$. Reason: $A \vec{x}$ is in the nullspace of A^T and also in the column space of A and those spaces are orthogonal complements.
- 14. The RREF of [A|B] is $\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. So if $A = [c_1|c_2]$ and $B = [d_1|d_2]$, then $d_1 = 3c_1 + c_2$.
 - So $d_1 = \begin{pmatrix} 5 \\ 6 \\ 5 \end{pmatrix}$ lies in both column spaces.
- 21. If S is spanned by (1,2,2,3) and (1,3,3,2), then S^{\perp} is spanned by (0,-1,1,0) and (-5,1,0,1). This is the same as solving $A\vec{x} = \vec{0}$ for $A = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2 \end{pmatrix}$ (i.e. finding the nullspace of this matrix.)
- 28. (a) Two planes in \mathbb{R}^3 cannot be orthogonal. In this case, the vector $[1, -1, 0]^T$ and its multiples form the intersection of the two planes.
 - (b) The orthogonal complement of a 2-D subspace of \mathbb{R}^5 is 3-D, but there are only two basis vectors given.

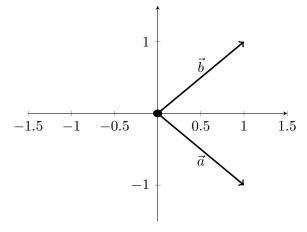
- (c) The subspaces spanned by $[1,0]^T$ and $[1,1]^T$ only intersect at the origin, but aren't orthogonal.
- 30. Since $C(B) \subseteq N(A)$, we get that dim $C(B) \le \dim N(A)$. A has four columns, so dim $N(A) + \dim C(A) = 4$, so dim $N(A) = 4 \dim C(A)$. Putting these two together, we get dim $C(B) \le 4 \dim C(A)$, so dim $C(A) + \dim C(B) \le 4$.

Page 215

2. (a)
$$\hat{x} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} = \frac{\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}}{\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}} = \cos \theta$$
. So $\vec{p} = \hat{x}\vec{a} = \cos \theta \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \theta \\ 0 \end{pmatrix}$.



(b)
$$\hat{x} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} = \frac{\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}}{\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}} = 0$$
. So $\vec{p} = 0\vec{a} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.



5. $P_1 = \frac{1}{9} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ 2 & 4 & 4 \end{pmatrix}$, and $P_2 = \frac{1}{9} \begin{pmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ 2 & -2 & 1 \end{pmatrix}$. Note that $P_1P_2 = 0$. This makes sense, because the vectors are orthogonal, so projecting onto one, then the other always gives the zero vector.

6.
$$\vec{p_1} = P_1 \vec{b} = \frac{1}{9} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}; \ \vec{p_2} = P_2 \vec{b} = \frac{1}{9} \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix}; \ \vec{p_3} = P_3 \vec{b} = \frac{1}{9} \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix}. \ p_1 + p_2 + p_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

7. $P_3 = \frac{1}{9} \begin{pmatrix} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{pmatrix}$. The three do indeed add up to I.

11. (a)
$$\vec{p} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$$
; $\vec{e} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$.

(b)
$$\vec{p} = \begin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix}$$
; $\vec{e} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

12.
$$P_1 = \frac{1}{9} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, P_2 = \frac{1}{9} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}. P_1 \vec{b} = \frac{1}{9} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}. P_2^2 \text{ is indeed the identity.}$$

17. $(I-P)^2 = I - 2P + P^2 = I - 2P + P = I - P$. When P projects on the column space of A, I-P projects onto its <u>left nullspace</u>.

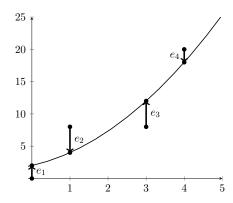
19. Two possible vectors are
$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$. Then $P = \frac{1}{6} \begin{pmatrix} 5 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & -2 & 2 \end{pmatrix}$.

- 20. The vector $\vec{e} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ (the vector of coefficients) is perpendicular to the plane. So $Q = \frac{\vec{e}\vec{e}T}{\vec{e}^T\vec{e}} = \frac{1}{6}\begin{pmatrix} 1 & -1 & -2 \\ -1 & 1 & 2 \\ 2 & 2 & 4 \end{pmatrix}$. So $P = I Q = \frac{1}{6}\begin{pmatrix} 5 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & -2 & 2 \end{pmatrix}$, as before.
- 27. $(I-P)^2 = I^2 IP PI + P^2 = I 2P + P = I P$. When P projects onto the column space of A, I-P projects onto the left nullspace of A.
- 31. You would take the dot product of $\vec{b} \vec{p}$ with each of the \vec{a}_i 's. If all the dot products are zero, then \vec{p} is the orthogonal projection of \vec{b} onto the subspace spanned by the \vec{a}_i 's.

Page 229

1.
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix}$$
. $\vec{b} = \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix}$. So $A^T A \hat{x} = \begin{pmatrix} 26 & 8 \\ 8 & 4 \end{pmatrix}$ and $A^T \vec{b} = \begin{pmatrix} 112 \\ 36 \end{pmatrix}$. $\hat{x} = (A^T A)^{-1} A^T \vec{b} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. So $\vec{p} = A \hat{x} = \begin{pmatrix} 1 \\ 5 \\ 13 \\ 17 \end{pmatrix}$, and $E = |\vec{e}|^2 = (\vec{b} - \vec{p})^2 = 44$.

9.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}$$
. $\hat{x} = (A^T A)^{-1} A \vec{b} = \begin{pmatrix} 2 \\ \frac{4}{3} \\ \frac{2}{3} \end{pmatrix}$. Best fit parabola is $2 + \frac{4}{3}x + \frac{2}{3}x^2$, and $\vec{p} = \begin{pmatrix} 2 \\ 4 \\ 12 \\ 18 \end{pmatrix}$.



25. Consider the matrix $\begin{pmatrix} 1 & t_1 & b_1 \\ 1 & t_2 & b_2 \\ 1 & t_3 & b_3 \end{pmatrix}$. The row echelon form of this is

$$\begin{pmatrix}
1 & t_1 & b_1 \\
0 & 1 & \frac{b_2 - b_1}{t_2 - t_1} \\
0 & 0 & (b_3 - b_1) - \frac{b_2 - b_1}{t_2 - t_1} (t_3 - t_1)
\end{pmatrix}$$

So we need $(b_3 - b_1) - \frac{t_3 - t_1}{t_2 - t_1}(b_2 - b_1) = 0$, or

$$\frac{b_3 - b_1}{t_3 - t_1} = \frac{b_2 - b_1}{t_2 - t_1}.$$

That is, the slope between (t_1, b_1) and (t_2, b_2) must be the same as the slope between (t_1, b_1) and (t_3, b_3)which makes sense!

28. If the columns of A are not independent, find the row echelon form of A to figure out the pivot columns. Remove all free columns from A to create a matrix B with the same column space, but with full row rank. Then $P = B(B^TB)^{-1}B^T$ is the projection onto C(B) = C(A).

Extra Problem

1. Create a matrix B that is A augmented by \vec{c} . Its RREF is $\begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -3 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Since

the last row is not all zeros, \vec{c} cannot be written as a linear combination of the columns of A, so it's not in C(A).

- 2. $A^T A = \begin{pmatrix} 14 & 5 & 13 & 1 \\ 5 & 5 & -5 & 10 \\ 13 & -5 & 41 & -28 \\ 1 & 10 & -28 & 29 \end{pmatrix}$, and $A^T \vec{c} = [22, 12, 8, 14]^T$.
- 3. We saw in part 1 of the question that A has rank 2, so N(A) is two-dimensional. Since we know that $N(A^TA) = N(A)$, $N(A^TA) \neq \{\vec{0}\}$, so $A^TA\hat{x} = A^T\vec{c}$ does not have a unique solution.

 $[10/9, 58/45, 0, 0]^T = \frac{1}{45}[50, 58, 0, 0]^T$. The special solutions of are $\hat{s}_1 = [-2, 3, 1, 0]^T$ and $\hat{s}_2 = [1, -3, 0, 1]^T$, so the general solution of the normal equation is

$$\hat{x} = \frac{1}{45} \begin{pmatrix} 50\\58\\0\\0\\0 \end{pmatrix} + c_1 \begin{pmatrix} 2\\3\\1\\0 \end{pmatrix} + c_2 \begin{pmatrix} 1\\-3\\0\\1 \end{pmatrix}.$$

- 5. $\vec{p} = A\hat{x} = \frac{1}{45}[-8, 100, 266]^T$, and $\vec{e} = \vec{c} \vec{p} = \frac{1}{45}[8, -10, 4]^T$.
- 6. Since A doesn't have full column rank, we can't just plug it into the formula for projection matrices. However, we can if we drop the two free columns (the 3^{rd} and 4^{th}). If C is the matrix consisting of the two remaining pivot columns of A, then C(A) = C(C), so

$$P = C(C^T C)^{-1} C^T = \frac{1}{45} \begin{pmatrix} 29 & 20 & -8 \\ 20 & 20 & 10 \\ -8 & 10 & 41 \end{pmatrix}.$$

7. The projection matrix onto $C(A^T)$ is the matrix $E(E^TE)^{-1}E^T$, where E is the matrix formed by the pivot columns of A^T . By taking the RREF of A^T , we see that the first two columns

are pivot columns. So
$$E = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 5 & 4 \\ 4 & -2 \end{pmatrix}$$
, giving $P = \begin{pmatrix} 19 & 9 & 11 & 8 \\ 9 & 6 & 0 & 9 \\ 11 & 0 & 22 & -11 \\ 8 & 9 & -11 & 19 \end{pmatrix}$. This gives

$$\hat{x}_{\text{row}} = P\hat{x}_p = \frac{1}{1485} \begin{pmatrix} 1472 \\ 798 \\ 550 \\ 922 \end{pmatrix}.$$

So we get

$$\hat{x} = \frac{1}{1485} \begin{pmatrix} 1472 \\ 798 \\ 550 \\ 922 \end{pmatrix} + c_1 \begin{pmatrix} 2 \\ 3 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -3 \\ 0 \\ 1 \end{pmatrix}.$$