Page 142

20. There are many. Anything whose RREF is $R=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ will do the trick.
21. Impossible, since rank + nullity $=3$, so the column space and row space cannot have the same dimension.
22. (a) Rank is 1 . RREF has first row all 1's, and all other entries 0 .
(b) Rank is 2. RREF is $\left(\begin{array}{ccrr}1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$.
(c) Rank is 1. RREF is $\left(\begin{array}{rrrr}1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.
23. (c) is the only correct definition of rank.

Page 158

4. The RREF of the matrix is $\left(\begin{array}{cccc}1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right)$. So columns 1 and 3 form a basis for $C(A)$. Note that $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$, so the particular solution is $x_{p}=\left(\begin{array}{c}\frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0\end{array}\right)$. By backsub, we find that the basis for $N(A)$ is $\left(\left(\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -2 \\ 1\end{array}\right)\right)$. Therefore the complete solution is

$$
\vec{x}=\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2} \\
0
\end{array}\right)+c_{1}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
0 \\
0 \\
-2 \\
1
\end{array}\right) .
$$

5. The RREF of $\left(\begin{array}{ccc|c}1 & 2 & -2 & b_{1} \\ 2 & 5 & -4 & b_{2} \\ 4 & 9 & -8 & b_{3}\end{array}\right)$ is $\left(\begin{array}{ccc|c}1 & 0 & -2 & 5 b_{1}-2 b_{2} \\ 0 & 1 & 0 & b_{2}-2 b_{1} \\ 0 & 0 & 0 & b_{3}-b_{2}-2 b_{1}\end{array}\right)$. So the system has a solution if and only if $b_{3}-b_{2}-2 b_{1}=0$. If that's the case, then $\vec{x}_{p}=\left(\begin{array}{c}5 b_{1}-2 b_{2} \\ b_{2}-2 b_{1} \\ 0\end{array}\right)$, and the special
solution is $[2,0,1]^{T}$. So the general solution is $\vec{x}=\left(\begin{array}{c}5 b_{1}-2 b_{2} \\ b_{2}-2 b_{1} \\ 0\end{array}\right)+c\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$.
6. Easiest solution is $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right), \vec{b}=\binom{2}{4}$, but there are many.
7. The largest possible rank of a 3 by 5 matrix is $\underline{3}$. Then there is a pivot in every row of U and R. The solution to $A \vec{x}=\vec{b}$ always exists. The column space of A is \mathbb{R}^{3}. An example is $A=\left(\begin{array}{ccccc}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right)$.
8. If $A \vec{x}=\vec{b}$ has infinitely many solutions, then $N(A)$ has non-zero dimension. So if one solution to $A \vec{x}=\vec{B}$ exists (i.e. $\vec{B} \in C(A)$), you can add any vector in the nullspace to get another solution. If $\vec{B} \notin C(A)$, then there is no solution.
9. (a) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$, or any matrix with full column rank, but not full row rank.
(b) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$, or any matrix with full row rank, but not full column rank.
(c) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, or any matrix with neither full row rank, nor free column rank.
(d) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, or any invertible matrix
10. (a) $r<m$
(b) $r=m<n$
(c) $r=n<m$
(d) $r=m=n$
11. $A=\left(\begin{array}{ll}1 & 0 \\ 3 & 0\end{array}\right)$.
12. (a) $\operatorname{rank}(A)=3$. The complete solution to $A \vec{x}=\overrightarrow{0}$ is $\vec{x}=c\left(\begin{array}{l}2 \\ 3 \\ 1 \\ 0\end{array}\right)$.
(b) $\operatorname{rref}(A)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.
(c) The rank is 3 , so $C(A)$ is a 3-D subspace of \mathbb{R}^{3}, i.e. \mathbb{R}^{3} itself. So all vectors are in the column space, which is the same as saying the equation has a solution for any vector.

Page 175

7. The v_{i} 's are linearly dep. if there is a set of non-zero c_{1}, c_{2}, c_{3} that solve $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. By plugging in the expressions for each v_{i} in terms of the w_{i} 's, we get

$$
\left(c_{2}+c_{3}\right) w_{1}+\left(c_{1}-c_{3}\right) w_{2}-\left(c_{1}+c_{2}\right) w_{3}=0 .
$$

One set of solutions is $c_{1}=c_{3}=1, c_{2}=-1 .\left[v_{1} v_{2} v_{3}\right]=\left[w_{1} w_{2} w_{3}\right] A$, where A is the singular matrix

$$
\left(\begin{array}{rrr}
0 & 1 & 1 \\
1 & 0 & -1 \\
-1 & -1 & 0
\end{array}\right)
$$

8. We want to show that the v_{i} 's are independent. So write

$$
\begin{aligned}
\overrightarrow{0}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3} & \Leftrightarrow \overrightarrow{0}=c_{1} \vec{w}_{2}+c_{1} \vec{w}_{3}+c_{2} \vec{w}_{1}+c_{2} \vec{w}_{3}+c_{3} \vec{w}_{1}+c_{3} \vec{w}_{2} \\
& \Leftrightarrow \overrightarrow{0}=\left(c_{2}+c_{3}\right) \vec{w}_{1}+\left(c_{1}+c_{3}\right) \vec{w}_{2}+\left(c_{1}+c_{2}\right) \vec{w}_{3}
\end{aligned}
$$

Since the $\overrightarrow{w_{i}}$'s are independent, this means that

$$
\begin{aligned}
& c_{2}+c_{3}=0 \\
& c_{1}+c_{3}=0 \\
& c_{1}+c_{2}=0
\end{aligned}
$$

or $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. By row-reducing, we see that the matrix has rank 3, so its nullspace is just the zero vector. So the only solution is $c_{1}=c_{2}=c_{3}=0$. Therefore the v_{i} 's are independent.
12. The vector \vec{b} is in the subspace spanned by the columns of A when $A \vec{x}=\vec{b}$ has a solution. The vector \vec{c} is in the row space of A when $A^{T} \vec{y}=\vec{c}$ has a solution. It is false that if the zero vector is in the row space then the rows are dependent. In fact, the zero vector is always in the row space by definition of a space.
16. (a) $[1,1,1,1]^{T}$ (or any multiple of this.)
(b) $[1,-1,0,0]^{T},[0,1,-1,0]^{T},[0,0,1,-1]^{T}$ (there are many others.)
(c) $[1,-1,-1,0]^{T},[0,0,1,-1]^{T}$ (there are many others.)
(d) $C(I)$ has basis $[1,0,0,0]^{T},[0,1,0,0]^{T},[0,0,1,0]^{T},[0,0,0,1]^{T}$ (or any basis of \mathbb{R}^{4}). The basis of $N(I)$ is the empty set.
21. (a) The equation $A \vec{x}=\overrightarrow{0}$ has only the solution $\vec{x}=\overrightarrow{0}$ because A has full column rank, since its columns are independent, so $N(A)=\{\overrightarrow{0}\}$.
(b) If \vec{b} is in \mathbb{R}^{5}, then $A \vec{x}=\vec{b}$ is solvable because the basis vectors span \mathbb{R}^{5}.
22. (a) True.
(b) False. Consider the standard basis for \mathbb{R}^{6}. Remove, say, $[0,0,0,0,0,1]^{T}$. Then if S contains any vector with a non-zero last coordinate, the remaining set cannot be a basis for S.
45. Let $v_{1}, \ldots, v_{\alpha}$ be a basis for V, and let w_{1}, \ldots, w_{β} be a basis for W. Then we know $\alpha+\beta>n$. Since any basis of \mathbb{R}^{n} has n vectors in it, the set $\left\{v_{1}, \ldots, v_{\alpha}, w_{1}, \ldots, w_{\beta}\right\}$ must be linearly dependent. Therefore there exists a set of scalars $c_{1}, \ldots, c_{\alpha}, d_{1}, \ldots, d_{\beta}$, not all zeros such that

$$
c_{1} v_{1}+\ldots+c_{\alpha} v_{\alpha}+d_{1} w_{1}+\ldots d_{\beta} w_{\beta}=\overrightarrow{0}
$$

Therefore $c_{1} v_{1}+\ldots+c_{\alpha} v_{\alpha}=-\left(d_{1} w_{1}+\ldots d_{\beta} w_{\beta}\right)$ is a non-zero vector in $V \cap W$.

Extra Problem

1. $\operatorname{Rank}(A)=6$.
2. Basis for $C(A):$ (column space):
$\left.\begin{array}{rrrrrrr}(1 & 0 & 0 & 0 & 0 & 0 & 5\end{array}\right)$

- Basis for $N\left(A^{T}\right)$ (left nullspace):
$\left(\begin{array}{lllllll}5 & 0 & -11 & -6 & -4 & -4 & -1\end{array}\right)$
- Basis for $C\left(A^{T}\right)$ (row space):
$\left.\begin{array}{rrrrrrrrrr}(1 & 0 & 0 & 0 & -5 & 0 & 0 & 2 & -3 & -2\end{array}\right)$
- Basis for $N(A)$ (nullspace):
$\left.\begin{array}{rrrrrrrrrr}(5 & -3 & 2 & 3 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

3. RREF $([A \mid c])=\left(\begin{array}{rrrrrrrrrrr}1 & 0 & 0 & 0 & -5 & 0 & 0 & 2 & -3 & -2 & 9 \\ 0 & 1 & 0 & 0 & 3 & 0 & 0 & 0 & 3 & -3 & 1 \\ 0 & 0 & 1 & 0 & -2 & 0 & 0 & 2 & 1 & -2 & 5 \\ 0 & 0 & 0 & 1 & -3 & 0 & 0 & 0 & -1 & -2 & 6 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

By setting all the free variables to zero, we get $x_{p}=[9,1,5,6,0,0,-3,0,0,0]$.
4. x_{p} is a linear combination of basis vectors in $C\left(A^{T}\right)$ (the row space) and $N(A)$ (the nullspace).
5. In order to express x_{p} as a linear combination of basis vectors in $C\left(A^{T}\right)$ (the row space) and $N(A)$ (the nullspace), create a 10×11 matrix whose first six columns are the basis vectors for $C\left(A^{T}\right)$, the next four columns the basis vectors for $N(A)$, and the last column x_{p}. Then the last column of this matrix's RREF is the coefficients of x_{p} as a linear combination of these basis vectors. (Bonus points: The coefficient vector turns out to be $\left.\frac{1}{193}\left(\begin{array}{llllllllll}26620 & 13768 & -35461 & -11647 & -13815 & 2005 & -14067 & 35507 & 30730 & 12138\end{array}\right).\right)$

