Page 142

- 20. There are many. Anything whose RREF is $R = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ will do the trick.
- 21. Impossible, since rank + nullity = 3, so the column space and row space cannot have the same dimension.
- 31. (a) Rank is 1. RREF has first row all 1's, and all other entries 0.
 - (b) Rank is 2. RREF is $\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
 - (c) Rank is 1. RREF is $\begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$
- 33. (c) is the only correct definition of rank.

Page 158

4. The RREF of the matrix is $\begin{pmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. So columns 1 and 3 form a basis for C(A).

Note that $\begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$, so the particular solution is $x_p = \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$. By backsub, we

find that the basis for N(A) is $\begin{pmatrix} 3\\1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\-2\\1 \end{pmatrix}$. Therefore the complete solution is

$$\vec{x} = \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 0 \\ -2 \\ 1 \end{pmatrix}.$$

5. The RREF of $\begin{pmatrix} 1 & 2 & -2 & b_1 \\ 2 & 5 & -4 & b_2 \\ 4 & 9 & -8 & b_3 \end{pmatrix}$ is $\begin{pmatrix} 1 & 0 & -2 & 5b_1 - 2b_2 \\ 0 & 1 & 0 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 - b_2 - 2b_1 \end{pmatrix}$. So the system has a solution if

and only if $b_3 - b_2 - 2b_1 = 0$. If that's the case, then $\vec{x}_p = \begin{pmatrix} 5b_1 - 2b_2 \\ b_2 - 2b_1 \\ 0 \end{pmatrix}$, and the special

solution is $[2,0,1]^T$. So the general solution is $\vec{x} = \begin{pmatrix} 5b_1 - 2b_2 \\ b_2 - 2b_1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$.

- 10. Easiest solution is $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$, but there are many.
- 16. The largest possible rank of a 3 by 5 matrix is $\underline{3}$. Then there is a pivot in every $\underline{\text{row}}$ of U and R. The solution to $A\vec{x} = \vec{b}$ always exists. The column space of A is \mathbb{R}^3 . An example is

$$A = \begin{pmatrix} \boxed{1} & 0 & 0 & 1 & 0 \\ 0 & \boxed{1} & 0 & 0 & 1 \\ 0 & 0 & \boxed{1} & 1 & 1 \end{pmatrix}.$$

- 22. If $A\vec{x} = \vec{b}$ has infinitely many solutions, then N(A) has non-zero dimension. So if one solution to $A\vec{x} = \vec{B}$ exists (i.e. $\vec{B} \in C(A)$), you can add any vector in the nullspace to get another solution. If $\vec{B} \notin C(A)$, then there is no solution.
- 24. (a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, or any matrix with full column rank, but not full row rank.
 - (b) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, or any matrix with full row rank, but not full column rank.
 - (c) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, or any matrix with neither full row rank, nor free column rank.
 - (d) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, or any invertible matrix
- 25. (a) r < m
 - (b) r = m < n
 - (c) r = n < m
 - (d) r = m = n
- 33. $A = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$.
- 34. (a) rank(A) = 3. The complete solution to $A\vec{x} = \vec{0}$ is $\vec{x} = c \begin{pmatrix} 2 \\ 3 \\ 1 \\ 0 \end{pmatrix}$.

(b)
$$rref(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

(c) The rank is 3, so C(A) is a 3-D subspace of \mathbb{R}^3 , i.e. \mathbb{R}^3 itself. So all vectors are in the column space, which is the same as saying the equation has a solution for any vector.

Page 175

7. The v_i 's are linearly dep. if there is a set of non-zero c_1 , c_2 , c_3 that solve $c_1v_1+c_2v_2+c_3v_3=0$. By plugging in the expressions for each v_i in terms of the w_i 's, we get

$$(c_2 + c_3)w_1 + (c_1 - c_3)w_2 - (c_1 + c_2)w_3 = 0.$$

One set of solutions is $c_1 = c_3 = 1$, $c_2 = -1$. $[v_1v_2v_3] = [w_1w_2w_3]A$, where A is the singular matrix

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}.$$

8. We want to show that the v_i 's are independent. So write

$$\vec{0} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 \Leftrightarrow \vec{0} = c_1 \vec{w}_2 + c_1 \vec{w}_3 + c_2 \vec{w}_1 + c_2 \vec{w}_3 + c_3 \vec{w}_1 + c_3 \vec{w}_2$$
$$\Leftrightarrow \vec{0} = (c_2 + c_3) \vec{w}_1 + (c_1 + c_3) \vec{w}_2 + (c_1 + c_2) \vec{w}_3$$

Since the $\vec{w_i}$'s are independent, this means that

$$c_2 + c_3 = 0$$
$$c_1 + c_3 = 0$$
$$c_1 + c_2 = 0$$

or $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. By row-reducing, we see that the matrix has rank 3, so its nullspace is just the zero vector. So the only solution is $c_1 = c_2 = c_3 = 0$. Therefore the v_i 's are independent.

- 12. The vector \vec{b} is in the subspace spanned by the columns of A when $\underline{A\vec{x} = \vec{b}}$ has a solution. The vector \vec{c} is in the row space of A when $\underline{A^T\vec{y} = \vec{c}}$ has a solution. It is false that if the zero vector is in the row space then the rows are dependent. In fact, the zero vector is always in the row space by definition of a space.
- 16. (a) $[1,1,1,1]^T$ (or any multiple of this.)
 - (b) $[1, -1, 0, 0]^T$, $[0, 1, -1, 0]^T$, $[0, 0, 1, -1]^T$ (there are many others.)
 - (c) $[1, -1, -1, 0]^T$, $[0, 0, 1, -1]^T$ (there are many others.)

- (d) C(I) has basis $[1,0,0,0]^T$, $[0,1,0,0]^T$, $[0,0,1,0]^T$, $[0,0,0,1]^T$ (or any basis of \mathbb{R}^4). The basis of N(I) is the empty set.
- 21. (a) The equation $A\vec{x} = \vec{0}$ has only the solution $\vec{x} = \vec{0}$ because \underline{A} has full column rank, since its columns are independent, so $N(A) = {\vec{0}}$.
 - (b) If \vec{b} is in \mathbb{R}^5 , then $A\vec{x} = \vec{b}$ is solvable because the basis vectors span \mathbb{R}^5 .
- 22. (a) True.
 - (b) False. Consider the standard basis for \mathbb{R}^6 . Remove, say, $[0,0,0,0,0,1]^T$. Then if S contains any vector with a non-zero last coordinate, the remaining set cannot be a basis for S.
- 45. Let v_1, \ldots, v_{α} be a basis for V, and let w_1, \ldots, w_{β} be a basis for W. Then we know $\alpha + \beta > n$. Since any basis of \mathbb{R}^n has n vectors in it, the set $\{v_1, \ldots, v_{\alpha}, w_1, \ldots, w_{\beta}\}$ must be linearly dependent. Therefore there exists a set of scalars $c_1, \ldots, c_{\alpha}, d_1, \ldots, d_{\beta}$, not all zeros such that

$$c_1v_1 + \ldots + c_{\alpha}v_{\alpha} + d_1w_1 + \ldots d_{\beta}w_{\beta} = \vec{0}.$$

Therefore $c_1v_1 + \ldots + c_{\alpha}v_{\alpha} = -(d_1w_1 + \ldots d_{\beta}w_{\beta})$ is a non-zero vector in $V \cap W$.

Extra Problem

- 1. Rank(A) = 6.
- 2. Basis for C(A): (column space):

$$(1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 5)$$

$$(0 \ 1 \ 0 \ 0 \ 0 \ 0)$$

$$(0 \ 0 \ 1 \ 0 \ 0 \ 0 \ -11)$$

$$(0 \ 0 \ 0 \ 1 \ 0 \ 0 \ -6)$$

$$(0 \ 0 \ 0 \ 0 \ 1 \ 0 \ -4)$$

$$(0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -4)$$

• Basis for $N(A^T)$ (left nullspace):

$$(5 \ 0 \ -11 \ -6 \ -4 \ -4 \ -1)$$

• Basis for $C(A^T)$ (row space):

$$(1 \quad 0 \quad 0 \quad 0 \quad -5 \quad 0 \quad 0 \quad 2 \quad -3 \quad -2)$$

$$(0 \ 1 \ 0 \ 0 \ 3 \ 0 \ 0 \ 0 \ 3 \ -3)$$

$$(0 \quad 0 \quad 1 \quad 0 \quad -2 \quad 0 \quad 0 \quad 2 \quad 1 \quad -2)$$

$$(0 \ 0 \ 0 \ 1 \ -3 \ 0 \ 0 \ 0 \ -1 \ -2)$$

$$(0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ -2 \ 1)$$

$$(0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -2 \ 2 \ 1)$$

• Basis for N(A) (nullspace):

$$(5 \quad -3 \quad 2 \quad 3 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0)$$

$$(-2 \quad 0 \quad 2 \quad 0 \quad 0 \quad -1 \quad 2 \quad 1 \quad 0 \quad 0)$$

$$(3 \quad -3 \quad -1 \quad 1 \quad 0 \quad 2 \quad -2 \quad 0 \quad 1 \quad 0)$$

$$(2 \quad 3 \quad 2 \quad 2 \quad 0 \quad -1 \quad -1 \quad 0 \quad 0 \quad 1)$$

- 4. x_p is a linear combination of basis vectors in $C(A^T)$ (the row space) and N(A) (the nullspace).
- 5. In order to express x_p as a linear combination of basis vectors in $C(A^T)$ (the row space) and N(A) (the nullspace), create a 10×11 matrix whose first six columns are the basis vectors for $C(A^T)$, the next four columns the basis vectors for N(A), and the last column x_p . Then the last column of this matrix's RREF is the coefficients of x_p as a linear combination of these basis vectors. (Bonus points: The coefficient vector turns out to be $\frac{1}{193}$ (26620 13768 -35461 -11647 -13815 2005 -14067 35507 30730 12138).)