Page 132

15. (a) The intersection of two planes through $(0,0,0)$ is probably a line in \mathbb{R}^{3}, but it could be a plane. It can't be Z!
(b) The intersection of a plane through $t(0,0,0)$ with a line through $(0,0,0)$ is probably a point, but it could be a line.
(c) Let $\vec{x}, \vec{y} \in S \cap T$. Then $\vec{x}, \vec{y} \in S$ and $\vec{x}, \vec{y} \in T$ (since S and T are vector spaces). So $\vec{x}+\vec{y} \in S$ and also $\vec{x}+\vec{y} \in T$. Therefore $\vec{x}+\vec{y} \in S \cap T$. Similarly, if $c \in \mathbb{R}$, then $c \vec{x} \in S$ and $c \vec{x} \in T$ (again, since they are vector spaces). So $c \vec{x} \in S \cap T$. Therefore $S \cap T$ is a vector space.
16. From left to right: $C(A)$ is all multiples of $[1,0,0]^{T}$, in othe words the x-axis in $\mathbb{R}^{3} ; C(B)$ is the $x-y$ plane in $\mathbb{R}^{3} ; C(C)$ is all multiples of the vector $[1,2,0]$ - a line.
17. If A is any 5 by 5 invertible matrix, then its column space is \mathbb{R}^{5}, since the equation $A \vec{x}=\vec{c}$ has solution $\vec{x}=A^{-1} \vec{c}$ for any vector \vec{c}.
18. If the 9 by 12 system $A \vec{x}=\vec{b}$ is solvable for every \vec{b}, then $C(A)=\mathbb{R}^{9}$.

Page 142

1. (a) $\left(\begin{array}{lllll}1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ (also accept the row echelon form, $\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. Free variables are x_{2}, x_{4}, and x_{5}.
(b) $\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ (also accept the row echelon form, $\left(\begin{array}{lll}2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 0\end{array}\right)$). Only x_{3} is free.
2. (a) $[-2,1,0,0,0]^{T},[0,0-2,1,0]^{T}$, and $[0,0,-3,0,1]^{T}$.
(b) $[1,-1,1]^{T}$.
3. $\operatorname{RREF}(A)=\left(\begin{array}{rrr}1 & -3 & -5 \\ 0 & 0 & 0\end{array}\right)$, so the special solutions are $[3,1,0]^{T}$ and $[5,0,1] . \operatorname{RREF}(B)=$ $\left(\begin{array}{rrr}1 & -3 & -5 \\ 0 & 0 & 1\end{array}\right)$, so the special solution is $[0,1,0]^{T}$. For an n by m matrix the number of pivot variables plus the number of free variables is \qquad
4. (a) False. The square zero matrix, for example, has all variables free.
(b) True. If A is invertible, then the unique solution to $A \vec{x}=\vec{c}$ is $\vec{x}=A^{-1} \vec{c}$. Equivalently, the RREF of an invertible matrix is the identity. Equivalently, all columns (or rows) of an invertible matrix are lin. ind.
(c) True. The number of columns is the number of variables. So certainly, there are no more free variables than columns.
(d) True. There can be no more than one pivot variable per row.
5. Suppose column 4 of a 3 by 5 matrix is all zero. Then x_{4} is certainly a free variable. The special solution for this variable is the vector $\vec{x}=[0,0,0,1,0]$
6. x_{5} is a free variable. The corresponding special solution is $[-1,0,0,0,1]$.
7. Suppose an m by n matrix has r pivots. The number of special solutions is $n-r$. The nullspace contains only $\vec{x}=\overrightarrow{0}$ when $r=\underline{n}$. The column space is all of \mathbb{R}^{m} when $\overline{r=\underline{m}}$.
8. The nullspace of a 5 by 5 matrix contains only $\vec{x}=\overrightarrow{0}$ when the matrix has $\underline{5}$ pivots. The column space is \mathbb{R}^{5} when there are $\underline{5}$ pivots. This is true because having full column rank in a square matrix makes it invertible.
9. Column 5 has no pivot. $N(A)$ is one-dimensional, with basis $[1,0,1,0,1]^{T}$, since $1 \cdot c_{1}+0 \cdot$ $c_{2}+1 \cdot c_{3}+0 \cdot c_{4}+1 \cdot c_{5}=\overrightarrow{0}$. Such a matrix might be $\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$.
10. $\left(\begin{array}{ccc}1 & 0 & -\frac{1}{2} \\ 1 & 3 & -2 \\ 5 & 1 & -3\end{array}\right)$. Note that $c_{1}+c_{2}+2 c_{3}=\overrightarrow{0}$, so the required vector is in the nullspace, and that the pivot columns (1 and 2) are a basis for the column space.
11. If $A B=0$, then the column space of B is contained in the nullspace of A. If $\vec{c} \in C(B)$, then $\vec{c}=B \vec{x}$ for some vector \vec{x}. Since $A B \vec{x}=0 \vec{x}=\overrightarrow{0}$, and by associativity, we get $\overrightarrow{0}=A(B \vec{x})=A \vec{c}$. So $\vec{c} \in N(A)$.

Page 175

2. Taking each vector to be the column of a matrix, then finding its RREF gives the first three columns as pivot columns. Hence a maximal linearly independent set is the first three vectors.
