Page 132

- 15. (a) The intersection of two planes through (0,0,0) is probably a <u>line</u> in \mathbb{R}^3 , but it could be a plane. It can't be Z!
 - (b) The intersection of a plane through t(0,0,0) with a line through (0,0,0) is probably a point, but it could be a <u>line</u>.
 - (c) Let $\vec{x}, \vec{y} \in S \cap T$. Then $\vec{x}, \vec{y} \in S$ and $\vec{x}, \vec{y} \in T$ (since S and T are vector spaces). So $\vec{x} + \vec{y} \in S$ and also $\vec{x} + \vec{y} \in T$. Therefore $\vec{x} + \vec{y} \in S \cap T$. Similarly, if $c \in \mathbb{R}$, then $c\vec{x} \in S$ and $c\vec{x} \in T$ (again, since they are vector spaces). So $c\vec{x} \in S \cap T$. Therefore $S \cap T$ is a vector space.
- 19. From left to right: C(A) is all multiples of $[1,0,0]^T$, in othe words the x-axis in \mathbb{R}^3 ; C(B) is the x-y plane in \mathbb{R}^3 ; C(C) is all multiples of the vector [1,2,0] a line.
- 26. If A is any 5 by 5 invertible matrix, then its column space is \mathbb{R}^5 , since the equation $A\vec{x} = \vec{c}$ has solution $\vec{x} = A^{-1}\vec{c}$ for any vector \vec{c} .
- 29. If the 9 by 12 system $A\vec{x} = \vec{b}$ is solvable for every \vec{b} , then $C(A) = \mathbb{R}^9$.

Page 142

- 1. (a) $\begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ (also accept the row echelon form, $\begin{pmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$). Free variables are x_2 , x_4 , and x_5 .
 - (b) $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ (also accept the row echelon form, $\begin{pmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 0 \end{pmatrix}$). Only x_3 is free.
- 2. (a) $[-2, 1, 0, 0, 0]^T$, $[0, 0 2, 1, 0]^T$, and $[0, 0, -3, 0, 1]^T$. (b) $[1, -1, 1]^T$.
- 4. $RREF(A) = \begin{pmatrix} 1 & -3 & -5 \\ 0 & 0 & 0 \end{pmatrix}$, so the special solutions are $[3,1,0]^T$ and [5,0,1]. $RREF(B) = \begin{pmatrix} 1 & -3 & -5 \\ 0 & 0 & 1 \end{pmatrix}$, so the special solution is $[0,1,0]^T$. For an n by m matrix the number of pivot variables plus the number of free variables is \underline{n} .
- 5. (a) False. The square zero matrix, for example, has all variables free.
 - (b) True. If A is invertible, then the unique solution to $A\vec{x} = \vec{c}$ is $\vec{x} = A^{-1}\vec{c}$. Equivalently, the RREF of an invertible matrix is the identity. Equivalently, all columns (or rows) of an invertible matrix are lin. ind.
 - (c) True. The number of columns is the number of variables. So certainly, there are no more free variables than columns.
 - (d) True. There can be no more than one pivot variable per row.

- 8. Suppose column 4 of a 3 by 5 matrix is all zero. Then x_4 is certainly a <u>free</u> variable. The special solution for this variable is the vector $\vec{x} = [0, 0, 0, 1, 0]$
- 9. x_5 is a free variable. The corresponding special solution is [-1,0,0,0,1].
- 10. Suppose an m by n matrix has r pivots. The number of special solutions is $\underline{n-r}$. The nullspace contains only $\vec{x} = \vec{0}$ when $r = \underline{n}$. The column space is all of \mathbb{R}^m when $r = \underline{m}$.
- 11. The nullspace of a 5 by 5 matrix contains only $\vec{x} = \vec{0}$ when the matrix has $\underline{5}$ pivots. The column space is \mathbb{R}^5 when there are $\underline{5}$ pivots. This is true because having full column rank in a square matrix makes it invertible.
- 14. Column 5 has no pivot. N(A) is one-dimensional, with basis $[1,0,1,0,1]^T$, since $1 \cdot c_1 + 0 \cdot c_2 + \cdots + c_n \cdot c_n + \cdots + c_n \cdot c_n \cdot c_n + \cdots + c_n \cdot c_n$

$$c_2 + 1 \cdot c_3 + 0 \cdot c_4 + 1 \cdot c_5 = \vec{0}. \text{ Such a matrix might be} \begin{pmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

- 17. $\begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 1 & 3 & -2 \\ 5 & 1 & -3 \end{pmatrix}$. Note that $c_1 + c_2 + 2c_3 = \vec{0}$, so the required vector is in the nullspace, and that the pivot columns (1 and 2) are a basis for the column space.
- 22. If AB = 0, then the column space of B is contained in the <u>nullspace</u> of A. If $\vec{c} \in C(B)$, then $\vec{c} = B\vec{x}$ for some vector \vec{x} . Since $AB\vec{x} = 0\vec{x} = \vec{0}$, and by associativity, we get $\vec{0} = A(B\vec{x}) = A\vec{c}$. So $\vec{c} \in N(A)$.

Page 175

2. Taking each vector to be the column of a matrix, then finding its RREF gives the first three columns as pivot columns. Hence a maximal linearly independent set is the first three vectors.