22. First matrix: \(P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad L = \begin{pmatrix} \frac{1}{2} & 1 & 0 \\ \frac{2}{3} & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}, \quad U = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -\frac{3}{2} & -1 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}. \)

Second matrix: \(P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad L = \begin{pmatrix} \frac{1}{2} & 1 & 0 \\ \frac{2}{3} & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}, \quad U = \begin{pmatrix} 2 & 4 & 1 \\ 0 & -1 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{pmatrix}. \)

39. (a) All diagonal entries are 1, so for each \(i \), \(q_i^T q_i = 1 \), but \(||q_i||^2 = q_i^T q_i \).

(b) All non-diagonal entries are 0, so for each \(i \neq j \), \(q_i^T q_j = 0 \).

(c) \(\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \). (There are three other possibilities)

Page 132

9. (a) \(\begin{pmatrix} x \\ y \end{pmatrix} \) with \(x \) and \(y \) integers. (Note: this is a lattice, an important structure in other areas of math.)

(b) Two lines intersecting at the origin.

10. (a) Yes;

(b) No (doesn’t contain the zero vector);

(c) No (not closed under addition);

(d) Yes;

(e) Yes;

(f) No (Not closed under scalar multiplication, e.g. by a negative scalar).

12. Many possibilities, like \(v_1 = [0, 0, -2]^T \), and \(v_2 = [4, 0, 0]^T \).

13. \(P_0 \) is given by \(x + y - 2z = 0 \). Many answers. E.g. \(v_1 = [1, 1, 1] \) and \(v_2 = [2, 0, 1] \). Then \(v_1 + v_2 = [3, 1, 2] \), and \(3 + 1 - 2 \times 2 = 0 \), as required.

16. Suppose \(P \) is a plane through (0, 0, 0) and \(L \) is a line through (0, 0, 0). The smallest vector space containing both \(P \) and \(L \) is either a point or a line (that is, it’s either the zero vector space, or \(L \) itself).

20. (a) Only for multiples of \([1, 2, -1]^T \).

(b) Any vector with \(b_1 + b_3 = 0 \).
22. First system: all vectors in \(\mathbb{R}^3 \); Second system: all vectors for which \(b_3 = 0 \); Third system: all vectors for which \(b_2 = b_3 \).

23. If we add an extra column \(\vec{b} \) to a matrix \(A \), then the column space gets larger unless \(\vec{b} \in \text{C}(A) \).

For example, if we add the column \([1, 1, 0]^T\) to the matrix \(
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{pmatrix}
\), the column space doesn’t get larger, but if we add the column \([0, 0, 1]^T\), it does. \(A\vec{x} = \vec{c} \) is solvable exactly if the column space doesn’t get larger because in that case, \(\vec{c} \in \text{C}(A) \), which is exactly the condition necessary for the equation to have a solution.

24. For two square matrices, any non-singular matrix \(A \) and singular matrix \(B \) will do. Specifically, if \(B \) is the zero matrix, we’re done.

27. (a) False. This set doesn’t contain the zero vector, so can’t be a subspace.

(b) True.

(c) True.

(d) False. For example, if \(A = I \), then \(\text{C}(A) = \mathbb{R}^n \), but \(\text{C}(A - I) = \{0\} \).

28. Many examples. Easiest for the first part: \(
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\). For the second part, any rank 1 matrix will do. For example, a matrix all of whose columns are the same and are not all zeros.

32. \(\text{C}(AB) \subseteq \text{C}(A) \), so by adding the columns of \(AB \) to the matrix \(A \) (to get \([AAB] \)), we don’t expand the column space. If (e.g.) \(A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \), then \(A^2 = 0 \), so \(\text{C}(A^2) \) is smaller than \(\text{C}(A) \). An \(n \) by \(n \) matrix has \(\text{C}(A) = \mathbb{R}^n \) exactly when \(A \) is an invertible matrix.
Extra Problem

A quadratic is $y = ax^2 + bx + c$. The system of equations is therefore:

$$
-7 = a + b + c \\
-16 = 4a + 2b + c \\
-33 = 9a + 3b + c
$$

Or

$$
\begin{pmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -7 \\ -16 \\ -33 \end{pmatrix}.
$$

Gaussian elimination takes the augmented matrix

$$
\begin{pmatrix} 1 & 1 & 1 & -7 \\ 4 & 2 & 1 & -16 \\ 9 & 3 & 1 & -33 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & -7 \\ 0 & -2 & -3 & 12 \\ 0 & 0 & 1 & -6 \end{pmatrix}
$$

so by back-sub, we get $c = -6$, $b = 3$, $a = -4$. This can be checked by plugging in the x values.