Page 66

30. (a) $\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$
(b) $\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)$
(c) $E M=\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right), F E M=\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right), E F E M=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), E E F E M=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), F E E F E M=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(d) $M^{-1}=F E E F E$, so $M=E^{-1} F^{-1} E^{-1} E^{-1} F^{-1}=A B A A B$.

Page 92

10. $A^{-1}=\left(\begin{array}{cccc}0 & 0 & 0 & 1 / 2 \\ 0 & 0 & 1 / 3 & 0 \\ 0 & 1 / 4 & 0 & 0 \\ 1 / 5 & 0 & 0 & 0\end{array}\right), B^{-1}=\left(\begin{array}{cccc}3 & -2 & 0 & 0 \\ -4 & 3 & 0 & 0 \\ 0 & 0 & 6 & -5 \\ 0 & 0 & -7 & 6\end{array}\right)$
11. (a) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$.
(b) $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.

Page 118

8. You have n choices for where the 1 in the first row goes. That leaves $(n-1)$ choices for where the 1 in the second row goes, then $(n-2)$ choices for where the 1 goes in the third row, and so on. Altogether, there are n ! possibilities.
9. (a) $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}\right)$
10. First matrix: $P=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right), L=\left(\begin{array}{rrr}1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1\end{array}\right), U=\left(\begin{array}{rrr}2 & 3 & 4 \\ 0 & -\frac{3}{2} & -1 \\ 0 & 0 & \frac{1}{3}\end{array}\right)$.

Second matrix: $P=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right), L=\left(\begin{array}{ccc}1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1\end{array}\right), U=\left(\begin{array}{rrr}2 & 4 & 1 \\ 0 & -1 & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2}\end{array}\right)$.
39. (a) All diagonal entries are 1 , so for each $i, q_{i}^{T} q_{i}=1$, but $\left\|q_{i}\right\|^{2}=q_{i}^{T} q_{i}$.
(b) All non-diagonal entries are 0 , so for each $i \neq j, q_{i}^{T} q_{j}=0$.
(c) $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$. (There are three other possibilities)

Page 132

9. (a) $\binom{x}{y}$ with x and y integers. (Note: this is a lattice, an important structure in other areas of math.)
(b) Two lines intersecting at the origin.
10. (a) Yes;
(b) No (doesn't contain the zero vector);
(c) No (not closed under addition);
(d) Yes;
(e) Yes;
(f) No (Not closed under scalar multiplication, e.g. by a negative scalar).
11. Many possibilities, like $v_{1}=[0,0,-2]^{T}$, and $v_{2}=[4,0,0]^{T}$.
12. P_{0} is given by $x+y-2 z=0$. Many answers. E.g. $v_{1}=[1,1,1]$ and $v_{2}=[2,0,1]$. Then $v_{1}+v_{2}=[3,1,2]$, and $3+1-2 \times 2=0$, as required.
13. Suppose P is a plane through $(0,0,0)$ and L is a line through $(0,0,0)$. The smallest vector space containing both P and L is either a point or a line (that is, it's either the zero vector space, or L itself).
14. (a) Only for multiples of $[1,2,-1]^{T}$.
(b) Any vector with $b_{1}+b_{3}=0$.
15. First system: all vectors in \mathbb{R}^{3}; Second system: all vectors for which $b_{3}=0$; Third system: all vectors for which $b_{2}=b_{3}$.
16. If we add an extra column \vec{b} to a matrix A, then the column space gets larger unless $\vec{b} \in C(A)$. For example, if we add the column $[1,1,0]^{T}$ to the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$, the column space doesn't get larger, but if we add the column $[0,0,1]^{T}$, it does. $A \vec{x}=\vec{c}$ is solvable exactly if the column space doesn't get larger because in that case, $\vec{c} \in C(A)$, which is exactly the condition necessary for the equation to have a solution.
17. For two square matrices, any non-singular matrix A and singular matrix B will do. Specifically, if B is the zero matrix, we're done.
18. (a) False. This set doesn't contain the zero vector, so can't be a subspace.
(b) True.
(c) True.
(d) False. For example, if $A=I$, then $C(A)=\mathbb{R}^{n}$, but $C(A-I)=\{\overrightarrow{0}\}$.
19. Many examples. Easiest for the first part: $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. For the second part, any rank 1 matrix will do. For example, a matrix all of whose columns are the same and are not all zeros.
20. $C(A B) \subseteq C(A)$, so by adding the columns of $A B$ to the matrix A (to get $[A A B]$), we don't expand the column space. If (e.g.) $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, then $A^{2}=0$, so $C\left(A^{2}\right)$ is smaller than $C(A)$. An n by n matrix has $C(A)=\mathbb{R}^{n}$ exactly when A is an invertible matrix.

Extra Problems

1. A quadratic is $y=a x^{2}+b x+c$. The system of equations is therefore:

$$
\begin{aligned}
-7 & =a+b+c \\
-16 & =4 a+2 b+c \\
-33 & =9 a+3 b+c
\end{aligned}
$$

Or

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-7 \\
-16 \\
-33
\end{array}\right)
$$

The $P A=L U$ decomposition (with MPP) is:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{4}{9} & 1 & 0 \\
\frac{1}{9} & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
9 & 3 & 1 \\
0 & \frac{2}{3} & \frac{5}{9} \\
0 & 0 & \frac{1}{3}
\end{array}\right)
$$

So by fwd-sub and back-sub, we get $c=-6, b=3, a=-4$. This can be checked by plugging in the x values.
2.

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & -1 \\
-2 & -7 & 4 \\
5 & 1 & -3
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{2}{5} & 1 & 0 \\
\frac{1}{5} & -\frac{3}{11} & 1
\end{array}\right)\left(\begin{array}{ccc}
5 & 1 & -3 \\
0 & -\frac{33}{5} & \frac{14}{5} \\
0 & 0 & \frac{4}{11}
\end{array}\right)
$$

