Additional Problem Three planes can fail to have an intersection point, even if no planes are parallel. Consider the two planes $A: x+y+z=0$ and $B: x-2 y-z=1$. Use the tool here https://technology.cpm.org/general/3dgraph/ to visualize these two planes, then answer the following questions:

1. What is the shape of the intersection $A \cap B$ of the two?
2. Use the equations of A and B to construct a third plane C whose intersection with the two is exactly the same as $A \cap B$. That is, $A \cap B \cap C=A \cap B$ (Hint: how can you create a singular system of three equations?)
3. Find a fourth plane D such that $A \cap D$, and $B \cap D$ are both non-empty, but $A \cap B \cap D$ is empty. That is, D should intersect both A and B, but the three should never meet. (Hint: Construct a permanent breakdown!)

For both the last two parts, I strongly suggest you use the tool linked above to draw the planes and see your answers!

