2. \(\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 3) - 8 = \lambda^2 - 4\lambda - 5 = (\lambda - 5)(\lambda + 1) \). So the eigenvalues are \(\lambda = 5, -1 \). These have eigenvectors corresponding the nullspaces of \(\begin{pmatrix} 4 & -4 \\ -2 & 2 \end{pmatrix} \) and \(\begin{pmatrix} 2 & -4 \\ -2 & -4 \end{pmatrix} \) resp. These have RREF’s \(\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \) resp. So \(E_5 \) has basis \([1, 1]^T\), and \(E_{-1} \) has basis \([2, -1]^T\). Similarly, \(A + I \) has eigenvalues 6 and 0 corresponding to the same eigenvectors. \(A + I \) has the same eigenvectors as \(A \). Its eigenvalues are increased by 1.

3. \(A \) has eigenvalues 2 and -1 with eigenvectors \([1, 1]^T\) and \([2, -1]^T\) resp. \(A^{-1} \) has eigenvalues \(\frac{1}{2} \) and -1 with eigenvectors \([1, 1]^T\) and \([2, -1]^T\). \(A^{-1} \) has the same eigenvectors as \(A \). When \(A \) has eigenvalues \(\lambda_1 \) and \(\lambda_2 \), its inverse has eigenvalues \(\frac{1}{\lambda_1} \) and \(\frac{1}{\lambda_2} \).

4. \(A: \lambda = 2, -3 \) with eigenvectors \([1, 1]^T\) and \([3, -2]^T\). \(A^2: \lambda = 4, 9 \) with the same eigenvector. \(A^2 \) has the same eigenvectors as \(A \). When \(A \) has eigenvalues \(\lambda_1 \) and \(\lambda_2 \), \(A^2 \) has eigenvalues \(\lambda_1^2 \) and \(\lambda_2^2 \). \(\lambda_1^2 + \lambda_2^2 = 13 = tr(A^2) \).

5. The eigenvalues of both \(A \) and \(B \) are 1 and 3. The eigenvalues of \(A + B \) are 5 and 3. Eigenvalues of \(A + B \) are not equal to eigenvalues of \(A \) plus eigenvalues of \(B \).

6. The only of \(A \) is 1. Same for \(B \). The eigenvalues of \(AB \) are \(2 - \sqrt{3} \) and \(2 + \sqrt{3} \). Same for \(BA \).

(a) The eigenvalues of \(AB \) are not equal to the eigenvalues of \(A \) times the eigenvalues of \(B \).

(b) The eigenvalues of \(AB \) are equal to the eigenvalues of \(BA \).

12. \(E_0 \) has basis vector \([2, -1, 0]^T\), and \(E_1 \) has basis vectors \([1, 2, 0]^T\) and \([0, 0, 1]^T\). \([1, 2, 1]\) is an eigenvector of \(P \) with no zero components.

13. \[P = \tilde{u} \tilde{u}^T = \frac{1}{36} \begin{pmatrix} 1 & 1 & 3 & 5 \\ 1 & 1 & 3 & 5 \\ 3 & 3 & 9 & 15 \\ 5 & 5 & 15 & 25 \end{pmatrix} \]

(a) \(P \tilde{u} = \tilde{u} \) comes from \((\tilde{u} \tilde{u}^T) \tilde{u} = \tilde{u}(\tilde{u}^T \tilde{u}) \). Then \(\tilde{u} \) is an eigenvector with eigenvalue 1.

(b) If \(\tilde{v} \perp \tilde{u} \), then \(P \tilde{v} = (\tilde{u} \tilde{u}^T) \tilde{v} = \tilde{u}(\tilde{u}^T \tilde{v}) = \tilde{0} \). Then \(\lambda = 0 \).

(c) Note that \(C(P) = \tilde{u} \), so \(E_0 \) is exactly \(C(P)^\perp = N(P^T) \). So we want a basis for the left nullspace of \(P \). Computing this, we find eigenvectors \([5, 0, 0, -1]^T\), \([0, 5, 0, -1]^T\) and \([0, 0, 5, -3]^T\).
15. The first matrix has complex eigenvalues $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$ and $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$, as well as 1. The second has eigenvalue -1 as well as 1.

17. The quadratic formula gives the eigenvalues $\lambda = \left(a + d + \sqrt{(a-d)^2 + 4bc} \right)/2$ and $\lambda = \left(a + d - \sqrt{(a-d)^2 + 4bc} \right)/2$. Their sum is $a + d$ (Note: this is the trace of A!). If A has $\lambda_1 = 3$ and $\lambda_2 = 4$, then $\det(A - \lambda I) = (3 - \lambda)(4 - \lambda)$.

19. (a) Yes. Rank is 2.
 (b) Yes. $|B^T| = |B| = 0 \cdot 1 \cdot 2 = 0$. So $|B^T B| = 0$.
 (c) No.
 (d) Yes. These are $\frac{1}{\lambda + 1}$ for each eigenvalue λ of B, so 1, $\frac{1}{2}$, and $\frac{1}{5}$.

21. The eigenvalue of A equal the eigenvalues of A^T. This is because $\det(A - \lambda I) = \det(A^T - \lambda I)$. That is true because $(A - \lambda I)^T = A^T - \lambda I^T = A^T - \lambda I$. So the determinants are the same.

Almost no matrices have the same eigenvectors as their transposes. For example, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ has eigenvector $[1, 0]^T$, but A^T has eigenvector $[0, 1]^T$.

27. Rank(A) = 1. It’s eigenvalues are 0 (with an AM of 3), and 4 (AM = 1). Rank(C) = 2. Its eigenvalues are 0 (AM = 2) and 2 (AM = 2).

32. (a) \vec{u} is a basis for the nullspace, and the vectors \vec{v} and \vec{w} are a basis for the column space.
 (b) A particular solution for $A\vec{x} = \vec{v} + \vec{w}$ is $\vec{x} = \frac{1}{3}\vec{v} + \frac{1}{5}\vec{w}$.
 (c) $A\vec{x} = \vec{u}$ has no solution. If it did then \vec{u} would be in the column space.

Page 314

2. $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$

4. (a) False.
 (b) True.
 (c) True.
 (d) False.

11. (a) True.
 (b) False.
 (c) False.

15. $A^k = XA^kX^{-1}$ approaches the zero matrix as $k \to \infty$ if and only if every λ has absolute values less than 1. A_1 has eigenvalues 1 and -0.3, so does not satisfy $\lim_{k \to \infty} A_1^k = 0$. On the other hand A_2 has eigenvalues 0.9 and 0.3, so $\lim_{k \to \infty} A_2^k = 0$.
16. \(\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & -0.3 \end{pmatrix} \), \(X = \begin{pmatrix} 9 & 1 \\ 4 & -1 \end{pmatrix} \). \(\lim_{k \to \infty} \Lambda^k = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \). \(\lim_{k \to \infty} X\Lambda^kX^{-1} = \frac{1}{13} \begin{pmatrix} 9 & 9 \\ 4 & 4 \end{pmatrix} \). In the columns of this matrix, you see the normalized eigenvector corresponding to \(\lambda = 1 \).

18. \(\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \). So \(A^k = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3^k & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + 3^k & 1 - 3^k \\ -3^k & 1 + 3^k \end{pmatrix} \).

31. \(A - \lambda_1I = X\Lambda X^{-1} - \lambda_1I = X(\Lambda - \lambda_1I)X^{-1} \). The matrix in the parentheses has a zero in the \((1, 1)\) position. Likewise, for each \(\lambda_i \), the corresponding matrix will have a zero in the \((i, i)\) position. We get
\[
(A - \lambda_1I)(A - \lambda_2I) \cdots (A - \lambda_nI) = X(\Lambda - \lambda_1I)(\Lambda - \lambda_2I) \cdots (\Lambda - \lambda_nI)X^{-1}.
\]
The product of the matrices in parentheses is zero.

Extra Question

1. \[
\chi_A(\lambda) = \begin{vmatrix} \lambda - 9 & 1 & 2 & -4 \\ 4 & \lambda - 2 & -1 & 2 \\ -8 & 0 & \lambda & -4 \\ 10 & -2 & -3 & \lambda + 4 \end{vmatrix} = \begin{vmatrix} \lambda - 9 & 1 & 2 & -4 \\ 4 & \lambda - 2 & -1 & 2 \\ -8 & 0 & \lambda & -4 \\ 2\lambda - 8 & 0 & 1 & \lambda - 4 \end{vmatrix} = (\lambda - 1)(\lambda - 2)(\lambda^2 - 4\lambda + 4) = (\lambda - 1)(\lambda - 2)^2 = (\lambda - 1)(\lambda - 2)^3
\]
So \(A \) has two eigenvalues: 1 and 2.

2. \[
N(I - A) = N\left(\begin{pmatrix} -8 & 1 & 2 & -4 \\ 4 & -1 & -1 & 2 \\ -8 & 0 & 1 & -4 \\ 10 & -2 & -3 & 5 \end{pmatrix}\right) = N\left(\begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}\right)
\]
So \(\vec{v}_1 = [-\frac{1}{2}, 0, 0, 1]^T \), with eigenvalue 1.
\[N(2I - A) = N \begin{pmatrix} -7 & 1 & 2 & -4 \\ 4 & 0 & -1 & 2 \\ -8 & 0 & 2 & -4 \\ 10 & -2 & -3 & 6 \end{pmatrix} = N \begin{pmatrix} 1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

So \(v_2 = [\frac{1}{4}, -\frac{1}{4}, 1, 0]^T \), and \(v_3 = [-\frac{1}{2}, \frac{1}{2}, 0, 1] \), with eigenvalue 2.

3. \(\lambda = 1 \) has \(AM = GM = 1 \). \(\lambda = 2 \) has \(AM = 3 \), but \(GM = 2 \).

4. \(A \) is not diagonalizable, as there are not enough linearly independent eigenvectors to create a square matrix of eigenvectors.