Positive Matrices and Perron's Theorem

Def. (For this section - careful!)
If P is an $n \times n$ matrix over \mathbb{R},
$P > 0$ mean all entries > 0

"Positive"

A vector $v > 0$ also mean all entries > 0.
$\sum v_i > 0$ also and $A > B$ mean $A - B > 0$
e etc.

Theorem (Perron):
Every $n \times n$ matrix P has a "dominant" eigenvalue
$\lambda(P) \in \mathbb{R}$ which satisfies:

I) $\lambda(P) > 0$ and its eigenvector h is also > 0.
\[Ph = \lambda(P)h.\]

II) $\lambda(P)$ is multiplicity one and has no
 associated generalized eigenvectors
 i.e. $\lambda(P)$ is simple?

III) For any other eigenvalue, λ,
\[|\lambda| < \lambda(P).\]

IV) There is no other eigenvector > 0.

Proof: Given P, let $p(P) \in \mathbb{R}_+$ be the $x \geq 0$ number λ
such that $\exists x$, with $x \neq 0, x \geq 0$ and
\[Px \geq \lambda x.\]
Lemma. If \(P > 0 \) then

1) \(P(x) \) contains a positive number
2) \(P(x) \) is bounded
3) \(P(x) \) is closed (includes all limits)

Proof. Given any \(x > 0 \), clearly \(Px > 0 \) so there must exist a \(\lambda > 0 \) such that \(Px > \lambda x \).

So 1) to write

2) Let \(\zeta \) be the row vector \((1,1,\ldots,1)\)

and consider resealed \(x \) such that

\[
\frac{\zeta x}{\zeta} = \sum x_i = 1
\]

Then \(Px \geq \lambda x \) gives

\[
\frac{\zeta Px}{\zeta} \geq \lambda
\]

Let \(\zeta P \) have largest component \(b \) so \(b \zeta \geq \zeta P \)

thus \(\lambda \leq \frac{\zeta Px}{\zeta} \leq b \zeta x = b \)

thus bounding \(\lambda \).

3) Read - uses analytical,

Thus, by lemma, \(P(x) \) has a max value, \(x_{\text{max}} > 0 \).

This is the later eigenval - used to prove properties
and that it's an eigenval!

Eigenv. We know \(P(x) \geq x_{\text{max}} \) for \(t > 0, t \to 0^+ \)

so we need to show \(= \) holds.

Suppose it didn't:

\[
\sum p_{ij} x_j \geq x_{\text{max}} x_i \quad \text{all } i
\]

but \(\sum p_{ij} x_j > x_{\text{max}} x_i \quad \text{some } k \).
3. \text{Let } x = h + (0, 0, \ldots, 0, \ldots) \text{ for } k^{th} \text{ spot}

So \(P x > P h \text{ for all components} \)

\text{Suppose } \sum p_{kj} x_j = \lambda_{\max} x_k + B
\text{ for some } B > 0.

then, \(\sum_{k} p_{kj} x_j = \lambda_{\max} x_k + B + e \left(p_{kk} - \lambda_{\max} \right) \text{ for some } e \in \mathbb{R} \)

So if \(e < \frac{B}{p_{kk} - \lambda_{\max}} \)

then \(P x > \lambda_{\max} x \).
\text{ ... contradicts } \lambda_{\max} \text{ being max!}

So \(\lambda_{\max} \) is eigenvalue

- \(h > 0 \): Since \(\lambda_{\max} > 0 \) and \(h > 0 \)
 we have \(P h > 0 \) \implies h > 0

- Simple: Suppose \(y \) is another eigenvector \(\lambda_{\min} \)
 - not multiple of \(h \).
 Then \(h + cy \) is eigenvector of \(\lambda_{\max} \)
 but then varying \(c \) we can make \(h + cy \leq 0 \).
4. Next suppose we have a generalized eigenvector

\[(P - \lambda \text{max})^2 y = 0\]

i.e. \[(P - \lambda \text{max}) y = c \cdot h\]

so \[Py = \lambda_{\text{max}} y + ch\].

WLOG \(c > 0\) (by \(y \geq y - y\))

\[y > 0\] (by \(y = y + bh\))

so then \[Py > \lambda_{\text{max}} y\]

which violates \(\lambda\) being max!

iii) Let \(x\) be another eigenvector \(\neq \lambda_{\text{max}}\) in \(e\).

\[\sum_j \begin{pmatrix} \rho_j \\ \psi_j \end{pmatrix} y_j = x y_i\]

so \[\sum_j |\rho_j| |y_j| > |\sum_j \begin{pmatrix} \rho_j \\ \psi_j \end{pmatrix} y_j| \quad \text{by } \Delta\text{-ineq.}\]

\[= 1x1jy_j| = |xjy_j| \quad \text{(x)}\]

so \(1x1\) belongs to \(p(P)\) with "\(h\)" vecs.

Let \((1y_1, 1:1)\)

If \(1x1 = \lambda_{\text{max}}\) then the above vec must be \(h\).

\[|y_i| = c \cdot h_i\] for some \(c\).

and \((x)\) is an equality.

equality holds in \(\Delta\text{-ineq}\) for vecs aligned

i.e. \[y_i = ce^{i\theta} h_i\] for all \(i\)

\[\Rightarrow y = ce^{i\theta} h \Rightarrow 1x1 = \lambda_{\text{max}}\]
5. IV) If \(\lambda \) is an eigenvalue of \(P \) and \(y \) is an eigenvector of \(P' \) with the same eigenvalue \(\lambda = \lambda' \), then \(y(\lambda) = 0 \).

Let \(P > 0 \) be diagonalizable at \(P \).

Since \(P > 0 \) it has diagonalizable eigenvectors \(\xi > 0 \).

So \(\xi(y) = 0 \) for any eigenvector \(\xi \) of \(P \) not \(\xi \).

\(\Rightarrow \) \(y \) must have non-negative entries.

A "stochastic matrix" is a square matrix with entries \(\geq 0 \) and row sum to 1.

E.g. \(\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \).

If \(S \) has entries \(s_{ij} \) one can think of \(s_{ij} \) as transition probabilities defining a "Markov Chain".

A "Markov Process" is a process that when the future depends only on current state and not the past.

E.g. A system has \(\Xi \) - a collection of "populations" each person in some state at time \(t \).

\(\text{Populations at time } t+1 = S \times \text{Pop at time } t \)

If \(\xi = (1,1,\ldots) \) row vector then \(\xi S = \xi \) by col sum to 1.

So total population unchanged in this model.
6. Theorem. If S is a positive stochastic matrix.

I) Dominant eigenvalue $= 1$.

II) If $x \neq 0$ then

\[\lim_{N \to \infty} S^N x = c1 \]

so x is constant $c \neq 0$.

Proof. I) If $S > 0$ then x is S^T.

S^T has eigenvalue 1 go $x^T (\cdot | 1) = $ element

so S has eigenvalue 1 too as S is

II) Let $x = \sum \frac{e_n}{h}$

Let S has Jordan Normal Form J

One block is 1

other blocks are $B = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$ with $|\lambda| < 1$.

So $\lim_{N \to \infty} B^N = 0$.

So $J^\infty = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = $ projection on to h.

Note $\left(S^N x, \xi \right) = \left(x, (S^T)^N \xi \right) = \left(x, \xi \right)$

$= c(h, \xi) \implies c \neq 0$ if $x \neq 0$.

So any Markov chain leads to a stab in a true
matrix yields a unique stable population.