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Abstract. We prove a nontrivial bound of O(|D|27/56+ε) for the 3-part of

the class number of a quadratic field Q(
√

D) by using a variant of the square

sieve and the q-analogue of van der Corput’s method to count the number of

squares of the form 4x3− dz2 for a square-free positive integer d and bounded
x, z.

1. Introduction

Consider the quadratic field Q(
√

D) with class group CL(D) and class number
h(D) for a nonzero integer D. The 3-part h3(D) of the class number is defined to
be the number of elements in the class group whose cube is the principal ideal class.
The trivial bound for the 3-part is

h3(D) ≤ h(D) � |D|1/2+ε

for any ε > 0. It is conjectured that h3(D) � |D|ε for any ε > 0.
We prove the following nontrivial bound for h3(D):

Theorem 1.1. Let D be a nonzero integer. The 3-part h3(D) of the class number
of the quadratic field Q(

√
D) admits the bound

h3(D) � |D|27/56+ε

for any ε > 0, where the implied constant depends only upon ε.

We reduce the problem of bounding the 3-part to counting squares as follows.
Let d be a square-free positive integer. By the Scholz reflection principle [13],
log3(h3(−d)) and log3(h3(+3d)) differ by at most one, hence we may restrict our
attention to imaginary quadratic fields Q(

√
−d). Suppose [a] ∈ CL(−d) is a non-

trivial element such that [a]3 is the principal ideal class. By the Minkowski bound,
there is an integral ideal b in [a] with norm

N(b) ≤ 2
π

√
|∆|,

where ∆ is the discriminant of the field. Furthermore, since b3 is principal, we may
write

4(N(b))3 = y2 + dz2

for some y, z ∈ N. An integer point on the cubic surface

(1.1) 4x3 = y2 + dz2
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specifies at most O(dε) ideals b, so we may obtain an upper bound for h3(−d) by
counting the number of integer points on (1.1) in the region x ≤ L, y ≤ M , and
z ≤ N , where

(1.2) L = (4/π)d1/2, M = (16/π3/2)d3/4, N = (16/π3/2)d1/4.

We obtain a nontrivial bound for h3(−d) by counting the number of squares of
the form

4x3 − dz2

with x ≤ L, z ≤ N , using a variant of the square sieve [6] that allows us to employ
the q-analogue of van der Corput’s method [4], [7] to bound certain sums resulting
from the square sieve. Furthermore, we use estimates for exponential sums resulting
from Weil’s proof of the Riemann hypothesis for curves over finite fields (as in [12]
or [14]), and an estimate of Katz [10] using Deligne’s results [2] for exponential sums
in several variables. It is the use of the q-analogue of van der Corput’s method in
combination with the variant of the square sieve that is the most innovative aspect
of this paper, allowing us to achieve a savings over the trivial bound for smaller
ranges of x, z than the square sieve alone could accommodate effectively.

In Section 2 we apply the square sieve variant, obtaining a main sieve term, two
prime sieve terms, and two error terms. In Section 3 we bound the main sieve
term, and in Section 4 we bound the two prime sieve terms. In Section 5 we choose
certain parameters optimally, obtaining our final bound. In Section 6 we estimate
the error terms, showing that they are dominated by the final bound. In Section 7
we note several immediate results of a nontrivial bound for h3(D).

Recent work by the author [11] has shown that h3(D) is O(|D|55/112+ε) in gen-
eral and O(|D|5/12+ε) if D has a divisor of size |D|5/6. These results were obtained
working modulo the square-free kernel of D, using cancellation of certain exponen-
tial sums, as in [5]. Furthermore, Helfgott and Venkatesh [8] have recently shown
that h3(D) is O(|D|0.44178...), using a new method for counting integral points on
elliptic curves, and a result for sphere-packings.

We also note two conditional results for h3(D). Assuming the Riemann hypothe-
sis for the single L-function L(χD, s) associated to the quadratic Dirichlet character
χD of the field Q(

√
D), Soundararajan has shown, as outlined in [8], that h3(D) is

O(|D|1/3+ε). Assuming both the Birch–Swinnerton-Dyer conjecture and the gen-
eralized Riemann hypothesis, Wong [15] has shown that h3(D) is O(|D|1/4+ε).

1.1. Notation. In this paper we use the following notational conventions. The
notation A � B indicates that A ≤ cB for a positive constant c that depends only
on certain variables as indicated. The notation A ≈ B indicates that A � B and
B � A. We denote by [x] the greatest integer part of x and by ‖x‖ the distance
from x to the nearest integer. We use the standard notation e(x) for e2πix and
eq(x) for e2πix/q. Also, we denote by n̄ the unique solution to n̄n ≡ 1 (mod q)
with 1 ≤ n̄ ≤ q. By convention, whenever n̄ appears, it is implicit that only values
of n with (n, q) = 1 are considered in the expression. The letter p always denotes
a prime. The Legendre symbol

(
n
p

)
is defined to be 0 if n is zero modulo p, +1

if n is a quadratic residue modulo p, and −1 otherwise. The Jacobi symbol
(

n
m

)
for a positive integer m = pa1

1 · · · par
r is defined in terms of Legendre symbols as(

n
p1

)a1

· · ·
(

n
pr

)ar

.
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2. The square sieve

The square sieve was introduced by Heath-Brown in [6] as a method for deter-
mining the number of squares in a given sequence of integers using only information
about the distribution of those integers with respect to a set of moduli. Specifi-
cally, consider a sequence (ω(n)) where ω is a non-negative integer-valued function
defined for each integer n, with

∑
ω(n) < ∞. We use the following variant of

the square sieve with a sieving set A of positive integers that are products of two
primes, rather than a sieving set of primes, as in [6].

Lemma 2.1 (Square Sieve Variant). Let A = {uv : u ∈ U , v ∈ V} where U and
V are disjoint sets of primes. Let A = #A, U = #U , and V = #V. Suppose that
ω(n) = 0 for n = 0 and for |n| ≥ exp(min(U, V )). Then

∑
n

ω(n2) � A−1
∑

n

ω(n) + A−2
∑

f 6=g∈A
(f,g)=1

∣∣∣∣∣∑
n

ω(n)
(

n

fg

)∣∣∣∣∣
+ V A−2

∑
u 6=u′∈U

∣∣∣∣∣∑
n

ω(n)
( n

uu′

)∣∣∣∣∣ + A−2|E(U)|

+ UA−2
∑

v 6=v′∈V

∣∣∣∣∣∑
n

ω(n)
( n

vv′

)∣∣∣∣∣ + A−2|E(V)|.

The error terms E(U) and E(V) are defined by:

E(U) =
∑
v∈V

∑
u 6=u′∈U

∑
n

v|n

ω(n)
( n

uu′

)
,

E(V) =
∑
u∈U

∑
v 6=v′∈V

∑
n

u|n

ω(n)
( n

vv′

)
.

Proof. Let

Σ =
∑

n

ω(n)

∑
f∈A

(
n

f

)2

.

Each n is summed with non-negative weight, and in particular, if n = m2, then

∑
f∈A

(
n

f

)
=

∑
f∈A

(
m2

f

)
=

∑
f∈A

(f,m)=1

1 ≥ A−
∑
f∈A

(f,m)6=1

1 � A,

since ω(n) = 0 for |n| ≥ exp(min(U, V )). Thus

(2.1) Σ � A2
∑

n

ω(n2).
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But also

Σ =
∑

f,g∈A

∑
n

ω(n)
(

n

fg

)

=
∑
f∈A

∑
n

ω(n)
(

n

f2

)
+

∑
f 6=g∈A
(f,g)=1

∑
n

ω(n)
(

n

fg

)
(2.2)

+
∑

f 6=g∈A
(f,g)6=1

∑
n

ω(n)
(

n

fg

)
.

The last term in (2.2) may be broken into the two terms

S(U) + S(V) =
∑
v∈V

∑
u 6=u′∈U

∑
n

v-n

ω(n)
( n

uu′

)
+

∑
u∈U

∑
v 6=v′∈V

∑
n

u-n

ω(n)
( n

vv′

)
.

Furthermore, S(U) may be written as a main term M(U), minus a correction term
E(U):

S(U) = M(U)− E(U) = V
∑

u 6=u′∈U

∑
n

ω(n)
( n

uu′

)
−

∑
v∈V

∑
u 6=u′∈U

∑
n

v|n

ω(n)
( n

uu′

)
.

Analogously, we may write S(V) = M(V)− E(V). Thus (2.2) becomes:

|Σ| � A
∑

n

ω(n) +
∑

f 6=g∈A
(f,g)=1

∣∣∣∣∣∑
n

ω(n)
(

n

fg

)∣∣∣∣∣
+ V

∑
u 6=u′∈U

∣∣∣∣∣∑
n

ω(n)
( n

uu′

)∣∣∣∣∣ + |E(U)|

+ U
∑

v 6=v′∈V

∣∣∣∣∣∑
n

ω(n)
( n

vv′

)∣∣∣∣∣ + |E(V)|.

The result then follows by comparison with (2.1). �

Let

T (d) = #{x, y, z ∈ N : y2 = 4x3 − dz2 : x ≤ L, y ≤ M, z ≤ N},

where L,M,N are as defined in (1.2). Then

(2.3) h3(−d) � dεT (d).

Furthermore, let

(2.4) ω(n) = #{x, z ∈ N : n = 4x3 − dz2 : x ≤ L, z ≤ N},

so that

T (d) =
∞∑

n=1

ω(n2).

Our main goal is thus to obtain a nontrivial bound T (d) � d1/2−θ, for some constant
θ > 0.
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Let Q be a positive number we will choose later; for now we assume only that
c log d ≤ Q ≤ d for some constant c. Let α, β ∈ (0, 1) be positive real numbers with
α + β = 1. Let U ,V,A be sets of cardinalities U, V,A, respectively, defined by

U = {primes u - d : c0Q
α < u ≤ 2c0Q

α}
V = {primes v - d : c1Q

β < v ≤ 2c1Q
β}

A = {uv : u ∈ U , v ∈ V}.

We will later see that it is sufficient to choose the constants to be c0 = 2, c1 = 1
in order that the sets U and V be disjoint; we may further assume that U and V
contain only odd primes.

The number of primes in the range c0Q
α < u ≤ 2c0Q

α is O(Qα(log Q)−1), and of
these primes, O(log d/ log log d) divide d. Assuming Q ≥ c log d for some constant
c, then U � Qα(log Q)−1 and similarly V � Qβ(log Q)−1. Thus the set A is of
cardinality A = UV � Q(log Q)−2.

For positive integers a, b with (a, b) = 1, define

C(d, a, b) =
∑

n

ω(n)
( n

ab

)
.

Applying Lemma 2.1 with the function ω(n) as defined in (2.4) and the sets A,U ,V
as defined above, we obtain

T (d) � A−1
∑

n

ω(n) + A−2
∑

f 6=g∈A
(f,g)=1

|C(d, f, g)|

+ V A−2
∑

u 6=u′∈U

|C(d, u, u′)|+ A−2|E(U)|(2.5)

+ UA−2
∑

v 6=v′∈V

|C(d, v, v′)|+ A−2|E(V)|.

The first term on the right hand side in (2.5), to which we will refer as the leading
term, is bounded trivially by

(2.6) A−1
∑

n

ω(n) � A−1LN � d3/4Q−1(log Q)2.

Thus it is clear that in order to attain a nontrivial bound for T (d), we must choose
Q = d1/4+δ for some δ > 0.

We will refer to the sum in (2.5) over f 6= g ∈ A with (f, g) = 1 as the main
sieve, and to the sums over u 6= u′ ∈ U and v 6= v′ ∈ V as the prime sieves over
the sets U and V, respectively. Sieving over products of primes, rather than over
primes alone, is a critical innovation of our methods. We will choose the sets U and
V so that each element in A is the product of a “large” prime and a “small” prime.
The q-analogue of van der Corput’s method then allows us to reduce the effective
modulus of certain exponential sums from the full modulus of an element in A
to the comparatively smaller modulus of the product of the larger primes alone,
thus enabling us to achieve a nontrivial bound for T (d), despite the relatively small
range of the variable z.
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2.1. The general term C(d, a, b). Our main goal is to estimate the term C(d, a, b),
which may be written as

C(d, a, b) =
∑
x≤L
z≤N

(
4x3 − dz2

ab

)
,

where as before
(

n
ab

)
is the Jacobi symbol. In order to obtain a nontrivial bound

for T (d), we require an estimate of the form |C(d, a, b)| � d1/2−θ for some θ > 0.
In order to accomplish such a bound, we will extend the ranges of the variables

x and z to complete sets of residues and then use exponential sum techniques.
However, it is only advantageous to extend to a complete set of residues modulo ab
if the initial range of the variable is at least of size

√
ab. In the case of the main

sieve,
√

ab is of size Q = d1/4+δ, where δ is a small positive constant. Thus the
range L ≈ d1/2 of the variable x is sufficiently large, while the range N ≈ d1/4 of
the variable z is not. Extending the ranges of both x and z at this point would
only obtain a bound of size |C(d, a, b)| � d1/2+2δ.

Therefore at this stage we only extend the range of x to a full set of residues
modulo ab. We later use the q-analogue of van der Corput’s method to reduce
the effective modulus of the resulting exponential sum so that we may then finally
extend the range of z to a full set of residues modulo the new, smaller modulus.
Extending the range of x, we obtain:

C(d, a, b) =
∑
z≤N

ab∑
α=1

(
4α3 − dz2

ab

) ∑
x≤L

x≡α (mod ab)

1

=
∑
z≤N

ab∑
α=1

(
4α3 − dz2

ab

)
1
ab

∑
x≤L

ab∑
k=1

eab(k(α− x)).

For an odd positive integer r - d, let

S(d, r; k, z) =
r∑

α=1

(
4α3 − dz2

r

)
er(kα)

and let

(2.7) S(d, r; k,N) =
∑
z≤N

S(d, r; k, z).

Then

(2.8) |C(d, a, b)| ≤ 1
ab

ab∑
k=1

min(L, ‖k/ab‖−1)|S(d, ab; k,N)|.

Thus the main problem is to bound sums of the form S(d, r; k, N). Using simply the
trivial bound |S(d, r; k, z)| ≤ r for each term in (2.7), we obtain a trivial bound of
|S(d, r; k,N)| ≤ Nr, which in the case of the main sieve is of size d1/4Q2 = d3/4+2δ.
Even assuming square-root cancellation for each individual term S(d, r; k, z) in
(2.7) only results in a bound of size |S(d, r; k,N)| � d1/2+δ. In order to obtain a
nontrivial bound for T (d), we require a bound of the form |S(d, r; k, N)| � d1/2−θ

for some θ > 0. Auxiliary cancellation over the z variable gives the critical savings.
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3. The main sieve

We first apply the q-analogue of van der Corput’s method to the term S(d, r; k,N)
appearing in the main sieve. To fix notation, elements f 6= g ∈ A with (f, g) = 1
will be written as f = uv and g = u′v′, where u 6= u′ ∈ U , v 6= v′ ∈ V. We further
set r = fg, with the factorization r = r0r1, where r0 = uu′ and r1 = vv′, so that
r0 ≈ Q2α and r1 ≈ Q2β .

The sum S(d, r; k, z) is multiplicative in the following sense:

Lemma 3.1. If (r0, r1) = 1, then

S(d, r0r1; k, z) = S(d, r0; kr1, z)S(d, r1; kr0, z),

where r0r0 ≡ 1 (mod r1) and r1r1 ≡ 1 (mod r0).

Proof. We may verify this directly. Writing α = α1r0 + α0r1 modulo r0r1,

S(d, r0r1; k, z) =
∑

α0 (mod r0)
α1 (mod r1)

(
4(α1r0 + α0r1)3 − dz2

r0r1

)
er0r1(k(α1r0 + α0r1))

=
∑

α0 (mod r0)
α1 (mod r1)

(
4(α0r1)3 − dz2

r0

) (
4(α1r0)3 − dz2

r1

)
er0(kα0)er1(kα1).

Making the transformations

α0 7→ α0r1 (mod r0),
α1 7→ α1r0 (mod r1),

and writing the double sum over α0 (mod r0) and α1 (mod r1) as two sums, we
then obtain the desired factorization. �

Temporarily define

A(z) =

{
S(d, r; k, z) if 1 ≤ z ≤ N ,
0 otherwise.

Similarly define A0(z) to be equal to S(d, r0; kr1, z) if 1 ≤ z ≤ N and zero otherwise,
and A1(z) to be equal to S(d, r1; kr0, z) if 1 ≤ z ≤ N and zero otherwise. Let
H = [N/r1]. Then

HS(d, r; k,N) =
H∑

h=1

∑
z

A(z + hr1)

=
∑

1−Hr1≤z≤N−r1

H∑
h=1

A0(z + hr1)A1(z + hr1)

=
∑

1−Hr1≤z≤N−r1

S(d, r1; kr0, z)
H∑

h=1

A0(z + hr1),

since S(d, r1; kr0, z + hr1) = S(d, r1; kr0, z) for all values of h. Thus by Cauchy’s
inequality,

H2|S(d, r; k,N)|2 ≤ Σ1Σ2,
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where

Σ1 =
∑

1−Hr1≤z≤N−r1

|S(d, r1; kr0, z)|2 ,

Σ2 =
∑

z

∣∣∣∣∣
H∑

h=1

A0(z + hr1)

∣∣∣∣∣
2

.

(Unless otherwise noted, the sum over z is taken over all integers; the characteristic
function A0 effectively restricts the sum to the appropriate range.)

We may further separate the term Σ2 into two parts. Observe that

Σ2 =
H∑

h1=1

H∑
h2=1

∑
z

A0(z + h1r1)A0(z + h2r1)

=
H∑

h1=1

H∑
h2=1

∑
z

A0(z + (h1 − h2)r1)A0(z)

=
∑
|h|<H

(H − |h|)
∑

z

A0(z + hr1)A0(z).

Thus in absolute value,

|Σ2| ≤ 2H
H−1∑
h=0

∣∣∣∣∣∑
z

A0(z + hr1)A0(z)

∣∣∣∣∣ .

Let

Σ2A = H
∑

z

|A0(z)|2 ,

Σ2B = H
H−1∑
h=1

∣∣∣∣∣∑
z

A0(z + hr1)A0(z)

∣∣∣∣∣ .

Then

(3.1) H2|S(d, r; k, N)|2 � Σ1 (Σ2A + Σ2B) .

3.1. Bounding Σ1 and Σ2A. By Lemma 3.1, it suffices to bound S(d, p; t, z) for
any odd prime p - d and positive integers t, z.

Lemma 3.2. Let p be an odd prime with p - d. Then

|S(d, p; t, z)| ≤ 3p1/2.

Proof. First assume that p > 3. If p - z and p - t, the Weil bound for hybrid sums of
a multiplicative and an additive character modulo p (see Chapter II of [12]) shows
that

|S(d, p; t, z)| ≤ 3p1/2.

If p - z but p|t then

p + S(d, p; t, z) =
p∑

α=1

[
1 +

(
4α3 − dz2

p

)]
= #{α, β (mod p) : β2 ≡ 4α3 − dz2 (mod p)}
= p + ap,
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where ap is the usual quantity associated with counting points on elliptic curves
over finite fields, with |ap| ≤ 2p1/2. Hence

|S(d, p; t, z)| ≤ 2p1/2.

If p|z but p - t, then

S(d, p; t, z) =
p∑

α=1

(
α

p

)
ep(tα),

so that
|S(d, p; t, z)| ≤ √p.

If p|z and p|t, then

S(d, p; t, z) =
p∑

α=1

(
4α3

p

)
=

p∑
α=1

(
α

p

)
= 0.

For p = 3, the trivial bound
|S(d, p; t, z)| ≤ 3

is sufficient. �

This immediately gives the following bounds for Σ1 and Σ2A:

Lemma 3.3.

Σ1 � (N + Hr1)r1,

Σ2A � HNr0.

3.2. Bounding Σ2B. Define

(3.2) T (d, r0;h, N) =
∑

z

A0(z + hr1)A0(z),

so that

(3.3) Σ2B = H

H−1∑
h=1

|T (d, r0;h, N)|.

Using simply the trivial bound |A0(z)| ≤ r0, we see that a trivial bound for (3.2)
is |T (d, r0;h, N)| ≤ Nr2

0. However, in order to obtain a nontrivial bound for T (d),
we require a bound significantly better than |T (d, r0;h, N)| � Nr0.

It is at this point that we extend the range of z to a complete set of residues
modulo the new modulus r0 ≈ Q2α. (We will later choose Q and α so that r0 is
of size d5/14. The range N ≈ d1/4 of the variable z is then larger than

√
r0, as

desired.) Write

T (d, r0;h, N) =
r0∑

l=1

S(d, r0; kr1, l + hr1)S(d, r0; kr1, l)
∑

1≤z≤N−hr1
z≡l (mod r0)

1

=
r0∑

l=1

S(d, r0; kr1, l + hr1)S(d, r0; kr1, l)

·
∑

1≤z≤N−hr1

1
r0

r0∑
m=1

er0(m(l − z)).
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Thus

(3.4) |T (d, r0;h, N)| ≤ 1
r0

r0∑
m=1

min(N, ‖m/r0‖−1) |W (d, r0;h, m, kr1)| ,

where we define

W (d, r0;h, m, kr1)

=
∑
l,α,β

(mod r0)

(
4α3 − d(l + hr1)2

r0

) (
4β3 − dl2

r0

)
er0(kr1α− kr1β + ml).

A simple computation similar to that of Lemma 3.1 shows that W (d, r0;h, m, kr1)
is multiplicative in the following sense: for r0 = uu′ with (u, u′) = 1,

W (d, r0;h, m, kr1) = W (d, u;h, mu′, kr1u′)W (d, u′;h, mu, kr1u),

where uu ≡ 1 (mod u′) and u′u′ ≡ 1 (mod u). Thus it is sufficient to bound the
sum

W (d, p;h, s, t) =
∑
l,α,β

(mod p)

(
4α3 − d(l + hr1)2

p

) (
4β3 − dl2

p

)
ep(tα− tβ + sl)

for any odd prime p with p - d and p - r1 and positive integers h, s, t. The following
estimate is due to Katz [10], using a result of Deligne [2] for exponential sums in
several variables.

Lemma 3.4. Let p > 3 be a prime with p - d and p - r1. If p - h or p - s, then

|W (d, p;h, s, t)| ≤ 24p3/2.

We use the following additional estimates in the cases when p divides both h and
s.

Lemma 3.5. Let p > 3 be a prime with p - d and p - r1. If p|h and p|s, but p - t,
then

|W (d, p;h, s, t)| ≤ 9p2.

Proof. In this case

|W (d, p;h, s, t)| ≤
∑

l (mod p)

∣∣∣∣∣∣
∑

α (mod p)

(
4α3 − dl2

p

)
ep(tα)

∣∣∣∣∣∣
2

.

We may bound the inner sum in absolute value by 3p1/2 using the Weil bound for
hybrid sums of a multiplicative and an additive character modulo p (as in [12]).
Estimating the sum over l trivially, we obtain a final bound of

|W (d, p;h, s, t)| ≤ 9p2.

�

Lemma 3.6. Let p > 3 be a prime with p - d and p - r1. If p|h, p|s, and p|t, then

|W (d, p;h, s, t)| = 0 if p ≡ 2 (mod 3),
|W (d, p;h, s, t)| ≤ 4p2 if p ≡ 1 (mod 3).
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Proof. In this case,

(3.5) |W (d, p;h, s, t)| ≤
∑

l (mod p)

∣∣∣∣∣∣
∑

α (mod p)

(
4α3 − dl2

p

)∣∣∣∣∣∣
2

.

If p ≡ 2 (mod 3), then for each fixed l, 4α3 − dl2 ranges over a complete set
of residues modulo p as α does, so that the inner sum in (3.5) vanishes. If p ≡
1 (mod 3) we may argue, as in Lemma 3.2, that

p +
∑

α (mod p)

(
4α3 − dl2

p

)

is the number of points on the elliptic curve β2 = 4α3 − dl2 over Fp, not counting
the point at infinity, and hence is equal to p + ap, where |ap| ≤ 2p1/2. Thus the
inner sum in (3.5) is bounded in absolute value by 2p1/2, so that in total

|W (d, p;h, s, t)| ≤ 4p2.

�

For the prime p = 3 we may simply use the trivial bound

|W (d, p;h, s, t)| ≤ 3.

We combine all of these results in the following lemma:

Lemma 3.7. Let p be an odd prime with p - d and p - r1. Then

|W (d, p;h, s, t)| ≤ 24p3/2(p, h, s)1/2.

Applying this bound to W (d, r0;h, m, kr1) in (3.4) gives

|T (d, r0;h, N)| � r
1/2
0

r0∑
m=1

(r0, h,m)1/2 min(N, ‖m/r0‖−1).

By (3.3) we then have

Σ2B � Hr
1/2
0

H−1∑
h=1

r0∑
m=1

(r0, h,m)1/2 min(N, ‖m/r0‖−1)

= NHr
1/2
0

H−1∑
h=1

(h, r0)1/2(3.6)

+ Hr
1/2
0

H−1∑
h=1

r0−1∑
m=1

‖m/r0‖−1(r0, h,m)1/2.
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We may estimate the double sum in (3.6) by
r0−1∑
m=1

‖m/r0‖−1
H−1∑
h=1

(r0, h,m)1/2 ≤ 2
∑

1≤m≤r0/2

r0

m

H−1∑
h=1

((r0, h), (r0,m))1/2

� r0

∑
1≤m≤r0/2

1
m

∑
d|(r0,m)

d1/2
H−1∑
h=1
d|h

1

� Hr0

∑
1≤m≤r0/2

1
m

∑
d|(r0,m)

d−1/2

� Hr0d(r0) log r0.

Similarly, the first sum in (3.6) is bounded by
H−1∑
h=1

(h, r0)1/2 � Hd(r0).

Thus the final bound for Σ2B is:

Lemma 3.8.
Σ2B � H2Nr

1/2
0 d(r0) + H2r

3/2
0 d(r0) log r0.

3.3. Bounding S(d, r; k, N). Assembling the results of Lemmas 3.3 and 3.8 in
(3.1), it follows that

|S(d, r; k,N)|2 � H−1N(N + Hr1)r0r1(3.7)

+ (N + Hr1)r1

[
Nr

1/2
0 d(r0) + r

3/2
0 d(r0) log r0

]
.

Since H = [N/r1], we obtain:

|S(d, r; k,N)| � Nr
1/4
0 r

1/2
1 (d(r0))1/2+N1/2r

1/2
0 r1+N1/2r

3/4
0 r

1/2
1 (d(r0))1/2(log r0)1/2.

By (2.8), we may now achieve a bound for the term C(d, f, g) in the main sieve:

Proposition 3.1. For any f 6= g ∈ A with (f, g) = 1,

|C(d, f, g)| ≤
[
Q−2L + log Q

] [
NQr

−1/4+ε
0 + N1/2Q2r

−1/2
0 + N1/2Qr

1/4+ε
0

]
.

This completes our estimate for the main sieve.

4. The prime sieves

We briefly consider the term S(d, r; k, N) in the prime sieves, when r is a product
of two distinct primes. This merely requires using the machinery already developed
for the main sieve, and is in fact simpler as we need only factorize the exponential
sums under consideration once. The case where r = uu′ is the product of two
distinct primes in the set U is analogous to the case where r = vv′ is the product
of two distinct primes in the set V, so we outline the argument only for the set U .

Define

A(z) =

{
S(d, uu′; k, z) if 1 ≤ z ≤ N ,
0 otherwise.

Similarly define A0(z) to be equal to S(d, u; ku′, z) if 1 ≤ z ≤ N and zero otherwise,
and A1(z) to be equal to S(d, u′; ku, z) if 1 ≤ z ≤ N and zero otherwise.
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Let HU = [N/u′]. Applying the q-analogue of van der Corput’s method as in
Section 3, we obtain an expression analogous to that of equation (3.1), namely

(4.1) H2
U |S(d, uu′; k,N)|2 � Σ1 (Σ2A + Σ2B) ,

where

Σ1 =
∑

1−HUu′≤z≤N−u′

|S(d, u′; ku, z)|2 ,

Σ2A = HU

∑
z

|A0(z)|2 ,

Σ2B = HU

HU−1∑
h=1

∣∣∣∣∣∑
z

A0(z + hu′)A0(z)

∣∣∣∣∣ .

By Lemma 3.2 it follows immediately that:

Lemma 4.1.

Σ1 � (N + HUu′)u′,
Σ2A � HUNu.

Let
T (d, u;h, N) =

∑
z

A0(z + hu′)A0(z),

so that

(4.2) Σ2B = HU

HU−1∑
h=1

|T (d, u;h, N)|.

Define W (d, u;h, m, ku′) as before, so that

|T (d, u;h, N)| ≤ 1
u

u∑
m=1

min(N, ‖m/u‖−1)
∣∣W (d, u;h, m, ku′)

∣∣ .

It follows immediately from Lemma 3.7 that

|T (d, u;h, N)| � u1/2
u∑

m=1

(u, h,m)1/2 min(N, ‖m/u‖−1),

so that from (4.2) we have

Σ2B � HUu1/2
HU−1∑
h=1

u∑
m=1

(u, h,m)1/2 min(N, ‖m/u‖−1).

Thus:

Lemma 4.2.
Σ2B � H2

UNu1/2d(u) + H2
Uu3/2d(u) log u.

Applying the bounds for Σ1,Σ2A, and Σ2B given in Lemmas 4.1 and 4.2 to (4.1),
it then follows that

|S(d, uu′; k,N)|2 � H−1
U N(N+HUu′)uu′+(N+HUu′)u′

[
Nu1/2d(u) + u3/2d(u) log u

]
.

Since HU = [N/u′], we then obtain

|S(d, uu′; k,N)| � Nu1/4u′1/2(d(u))1/2+N1/2u1/2u′+N1/2u3/4u′1/2(d(u))1/2(log u)1/2.
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We thus obtain a bound for C(d, u, u′) by (2.8). For reference we state the corre-
sponding result for C(d, v, v′) as well:

Proposition 4.1. For any u 6= u′ ∈ U and v 6= v′ ∈ V ,

|C(d, u, u′)| ≤
[
Q−2αL + log Q

] [
NQ(3/4)α+ε + N1/2Q(3/2)α + N1/2Q(5/4)α+ε

]
,

|C(d, v, v′)| ≤
[
Q−2βL + log Q

] [
NQ(3/4)β+ε + N1/2Q(3/2)β + N1/2Q(5/4)β+ε

]
,

for any ε > 0, where all implied constants depend only on ε.

This completes our bounds for the prime sieve terms.

5. The final bound for T (d)

Applying the bounds of Propositions 3.1 and 4.1 to (2.5), we obtain

T (d) � Q−1LN(log Q)2

+
[
Q−2L + log Q

] [
NQr

−1/4+ε
0 + N1/2Q2r

−1/2
0 + N1/2Qr

1/4+ε
0

]
+ V −1

[
Q−2αL + log Q

] [
NQ(3/4)α+ε + N1/2Q(3/2)α + N1/2Q(5/4)α+ε

]
+ U−1

[
Q−2βL + log Q

] [
NQ(3/4)β+ε + N1/2Q(3/2)β + N1/2Q(5/4)β+ε

]
+ A−2|E(U)|+ A−2|E(V)|.

Balancing the contributions of the leading term and the main sieve, it is optimal
to choose Q = d1/4+δ with δ = 1/56 and r0 = Q4/3, so that α = 2/3 and β = 1/3.
The prime sieve over the set U is then bounded by

d3/56+ε
[
NQ1/2+ε + N1/2Q + N1/2Q5/6+ε

]
� d25/56+ε ≈ d0.44642...+ε,

and the prime sieve over the set V is bounded by

d1/7+ε
[
NQ1/4+ε + N1/2Q1/2 + N1/2Q5/12+ε

]
� d103/224+ε ≈ d0.45982...+ε.

Assuming that the error terms are also dominated by the leading term and the
main sieve (as we will show in the following section), we thus have the final bound

(5.1) T (d) � d27/56+ε ≈ d0.48214...+ε.

Hence by (2.3), it follows that

h3(−d) � d27/56+ε.

6. The error terms

We may estimate the error term E(U) as follows. Write

E(U) =
∑

u 6=u′∈U

∑
v∈V

∑
z≤N

∑
x≤L

4x3≡dz2 (mod v)

(
4x3 − dz2

uu′

)
.

For a fixed odd prime v ∈ V and a fixed value z ≤ N , there are δ = 0, 1, or 3
solutions x modulo v to

4x3 ≡ dz2 (mod v).
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Thus we may divide the set of x ≤ L with 4x3 ≡ dz2 (mod v) into the sets
{x ≤ L : x ≡ x0 (mod v)} for δ values x0. Let

K = LV −1 ≈ d1/2−5/56+ε.

Writing x = x0 + vt with t ≤ K, we then have

E(U) =
∑

u 6=u′∈U

∑
v∈V

∑
z≤N

∑
x0

∑
t≤K

(
4(x0 + vt)3 − dz2

uu′

)
.

Define

D(d, uu′; v, x0, z, K) =
∑
t≤K

(
4(x0 + vt)3 − dz2

uu′

)
,

so that

(6.1) E(U) � U2V N max |D(d, uu′; v, x0, z, K)|,
where the maximum is taken over all appropriate pairs u, u′ and v, x0, z.

6.1. Bounding D(d, uu′; v, x0, z, K). We may write D(d, uu′; v, x0, z, K) as a sum
over a complete set of residues modulo uu′,

D(d, uu′; v, x0, z, K) =
uu′∑
α=1

(
4(x0 + vα)3 − dz2

uu′

) ∑
t≤K

t≡α (mod uu′)

1

=
1

uu′

uu′∑
h=1

uu′∑
α=1

(
4(x0 + vα)3 − dz2

uu′

)
euu′(hα)

∑
t≤K

euu′(−ht).

Define

Y (d, uu′; v, x0, z, h) =
uu′∑
α=1

(
4(x0 + vα)3 − dz2

uu′

)
euu′(hα),

so that

(6.2) |D(d, uu′; v, x0, z, K)| ≤ 1
uu′

uu′∑
h=1

min(K, ‖h/uu′‖−1)|Y (d, uu′; v, x0, z, h)|.

A simple computation similar to that of Lemma 3.1 shows that we have the factor-
ization

Y (d, uu′; v, x0, z, h) = Y (d, u; v, x0, z, hu′)Y (d, u′; v, x0, z, hu),

for (u, u′) = 1, with uu ≡ 1 (mod u′) and u′u′ ≡ 1 (mod u). Thus it is sufficient to
bound Y (d, p; v, x0, z, h) for any odd prime p with p - d, p - v.

Lemma 6.1. For an odd prime p with p - d, p - v,

|Y (d, p; v, x0, z, h)| ≤ 3p1/2.

Proof. First suppose that p > 3. If p - z and p - h, then applying the Weil bound
for hybrid sums (as given in [12]),

|Y (d, p; v, x0, z, h)| ≤ 3p1/2.

If p - z but p|h, then

Y (d, p; v, x0, z, h) =
p∑

α=1

(
4(x0 + vα)3 − dz2

p

)
.
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Arguing as in Lemma 3.2, we obtain

|Y (d, p; v, x0, z, h)| ≤ 2p1/2.

If p|z then

Y (d, p; v, x0, z, h) =
p∑

α=1

(
4(x0 + vα)3

p

)
ep(hα) =

p∑
α=1

(
x0 + vα

p

)
ep(hα).

Since p - v we may make the change of variables α 7→ α− vx0 so that

Y (d, p; v, x0, z, h) =
(

v

p

)
ep(−hvx0)

p∑
α=1

(
α

p

)
ep(hα).

Then if p - h, the classical bound for character sums (see Chapter 7 of [9]) shows
that

|Y (d, p; v, x0, z, h)| ≤ p1/2.

If furthermore p|h, then

Y (d, p; v, x0, z, h) =
(

v

p

) p∑
α=1

(
a

p

)
= 0.

For p = 3, the trivial bound

|Y (d, p; v, x0, z, h)| ≤ 3

is sufficient. �

It follows immediately from Lemma 6.1 that

|Y (d, uu′; v, x0, z, h)| ≤ 9u1/2u′1/2.

Applying this in (6.2), we obtain:

|D(d, uu′; v, x0, z, K)| � u−1/2u′−1/2
uu′∑
h=1

min(K, ‖h/uu′‖−1)

� u−1/2u′−1/2K + u1/2u′1/2
∑

1≤h≤uu′/2

h−1

� u−1/2u′−1/2K + u1/2u′1/2 log U.

Therefore in (6.1),

|E(U)| � U2V N(U−1K + U log U) � ULN + U3V N log U.

Thus
A−2|E(U)| � V −1(A−1LN) + UV −1N log U.

This estimate for the error term E(U) is sufficiently sharp. The analogous bound
for E(V),

A−2|E(V)| � U−1(A−1LN) + V U−1N log V,

is also sufficiently sharp. This completes the proof of Theorem 1.1.
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7. Remarks

It is an immediate consequence of Theorem 1.1 that there are O(|D|27/56+ε)
cubic extensions of Q with discriminant D, by Hasse’s result [3]. Additionally, a
result of Brumer and Silverman [1] shows that a bound for the 3-part of the form
h3(D) � |D|λ+ε gives a bound of O(Nλ+ε) for the number of elliptic curves over
Q with conductor N . In particular, the trivial bound h3(D) � |D|1/2+ε gives the
result that there are O(N1/2+ε) elliptic curves over Q with conductor N . Theorem
1.1 refines this to O(N27/56+ε). Furthermore, in [8], Helfgott and Venkatesh present
a new method for counting integral points on elliptic curves that enables them to
show that a bound of the form h3(D) � |D|λ+ε gives a bound of O(N2βλ/ log 3+ε)
for the number of elliptic curves over Q with conductor N , where β is the numerical
constant 0.278236.... By Theorem 1.1, we may take λ = 27/56+ε, yielding a bound
of O(N0.24422...+ε). However, this is slightly weaker than the bound given by the
methods of Helfgott and Venkatesh, namely O(N0.22377...+ε).

Finally, we note that our methods do not appear to extend to give a nontrivial
bound for the g-part hg(−d) for g > 3. The general problem is to bound

Tg(d) = #{x, y, z ∈ N : y2 = 4xg − dz2 : x ≤ Lg, y ≤ Mg, z ≤ Ng},

where Lg = (4/π)d1/2 as before, but Mg � dg/4 and Ng � dg/4−1/2. Applying our
variant of the square sieve as above, we obtain a bound for Tg(d) equivalent to (2.5),
and we may even carry through the technical analysis of the term corresponding to
C(d, a, b). But in order for the leading term in (2.5), which in the general case is of
size Q−1LgNg(log Q)2, to be less than the trivial bound d1/2+ε, we would need to
choose Q to be at least of size dg/4−1/2+δ, for some δ > 0. The main sieve cannot
accommodate such a large value for Q and give a nontrivial bound, for g > 3.

8. Acknowledgements

The author would like to thank D. R. Heath-Brown for advising the thesis of
which this work is a part. The author would also like to thank N. Katz for proving
a key estimate in [10], as well as P. Sarnak for his advice and encouragement, the
referee for a number of helpful comments, and H. Helfgott and A. Venkatesh for
providing a preprint of [8]. The author was supported by the Rhodes Trust for the
duration of this work at the Mathematical Institute, Oxford University.

References

[1] A. BRUMER and J. H. SILVERMAN, ‘The number of elliptic curves over Q with conductor

N ,’ Manuscripta Math. 91 (1996) 95-102.
[2] P. DELIGNE, ‘La Conjecture de Weil II,’ Pub. Math. I.H.E.S. 52 (1981) 313-428.

[3] H. HASSE, ‘Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer

Grundlage,’ Math. Z. 31 (1930) 565-582. Corrigendum, Math. Z. 31 (1930) 799.
[4] D. R. HEATH-BROWN, ‘Hybrid bounds for L-functions: a q-analogue of Van der Corput’s

method and a t-analogue of Burgess’s method,’ Recent Progress in Analytic Number Theory,
ed. Halberstam and Hooley, London: Academic Press (1981) 121-126.

[5] D. R. HEATH-BROWN, ‘The least square-free number in an arithmetic progression,’ J. Reine

Angew. Math. 332 (1982) 204-220.
[6] D. R. HEATH-BROWN, ‘The square sieve and consecutive square-free numbers,’ Math. Ann.

266 (1984) 251-259.
[7] D. R. HEATH-BROWN, ‘The largest prime factor of X3 + 2,’ Proc. London Math. Soc., 82

No. 3 (2001) 554-596.



18 LILLIAN B. PIERCE

[8] H. HELFGOTT and A. VENKATESH, ‘Integral points on elliptic curves and 3-torsion in
class groups,’ preprint available at http://www.arxiv.org/abs/math.NT/0405180.

[9] L. K. HUA, Introduction to Number Theory. Berlin: Springer-Verlag (1982).

[10] N. M. KATZ, ‘On a question of Lillian Pierce,’ Forum Math., in press.
[11] L. B. PIERCE, ‘The 3-Part of Class Numbers of Quadratic Fields,’ J. London Math. Soc., in

press.
[12] W. SCHMIDT, Equations over Finite Fields: An Elementary Approach. Lecture Notes in

Mathematics 536. Berlin: Springer-Verlag (1976).
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