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Abstract

We consider solutions of a scalar reaction-diffusion equation of the ignition type with a random,
stationary and ergodic reaction rate. We show that solutions of the Cauchy problem spread with
a deterministic rate in the long time limit. We also establish existence of generalized random
traveling waves and of transition fronts in general heterogeneous media.

1 Introduction

We consider solutions to the equation

ut = ∆u+ f(x, u, ω), x ∈ R (1.1)

where f(x, u, ω) is a random ignition-type nonlinearity that is stationary with respect to transla-
tion in x. The function f has the form f(x, u, ω) = g(x, ω)f0(u). Here, f0(u) is an ignition-type
nonlinearity with an ignition temperature θ0 ∈ (0, 1): f0(u) is a Lipschitz function, and, in addition,

f0(u) = 0 for u ∈ [0, θ0] ∪ {1}, f0(u) > 0 for u ∈ (θ0, 1), f
′
0(1) < 0.

The reaction rate g(x, ω), x ∈ R, is a stationary, ergodic random field defined over a probability
space (Ω,P,F): there exists a group {πx}, x ∈ R, of measure-preserving transformations acting
ergodically on (Ω,P,F) such that g(x+ h, ω) = g(x, πhω). We suppose that g(x, ω) is almost surely
Lipschitz continuous with respect to x and that there are deterministic constants gmin, gmax such
that

0 < gmin ≤ g(x, ω) ≤ gmax <∞

holds almost surely. Thus, we have

fmin(u) ≤ f(x, u, ω) ≤ fmax(u),

where fmin(u) = gminf0(u) and fmax(u) = gmaxf0(u) are both ignition-type nonlinearities with the
same ignition temperature. We assume that the probability space Ω = C(R; [gmin, gmax]) and that
F contains the Borel σ-algebra generated by the compact open topology (the topology of locally
uniform convergence) on C(R; [gmin, gmax]).

We are interested in the following two issues: first, how do solutions of the Cauchy problem for
(1.1) with a compactly supported non-negative initial data spread in the long time limit? Second, do
there exist special solutions of (1.1) that generalize the notion of a traveling front in the homogeneous
case?

∗Department of Mathematics, Stanford University, Stanford, CA 94305, USA. (nolen@math.stanford.edu).
†Department of Mathematics, University of Chicago, Chicago, IL 60637, USA. (ryzhik@math.uchicago.edu).

1



It is well known since the pioneering work by Ya. Kanel [17] that in the uniform case:

ut = ∆u+ f(u) (1.2)

with an ignition-type nonlinearity f(u), all solutions with the initial data u0(x) = u(0, x) in a class
I ⊂ Cc(R), 0 ≤ u0(x) ≤ 1, propagate with the same speed c∗ in the sense that

lim
t→+∞

u(t, ct) = 0 for |c| > c∗, (1.3)

and
lim

t→+∞
u(t, ct) = 1 for |c| < c∗. (1.4)

The initial data is restricted to the class I to preclude the possibility of the so-called quenching
phenomenon where u → 0 uniformly in x as t → ∞. In particular, I contains functions that are
larger than θ0 + ε on a sufficiently large interval, depending on ε > 0. The constant c∗ above is the
speed of the unique traveling wave solution u(t, x) = U(x− c∗t) of (1.2):

−c∗U ′ = U ′′ + f(U), U(−∞) = 1, U(+∞) = 0.

As far as heterogeneous media are concerned this result has been extended to the periodic case:
J. Xin [32, 33], and H. Berestycki and F. Hamel [2] have shown that when the function f(x, u)
is periodic in x, equation (1.1) admits special solutions of the form u(t, x) = U(x − c∗t, x), called
pulsating fronts, which are periodic in the second variable and satisfy

U(s, x) → 1 as s→ −∞, and U(s, x) → 0 as s→ +∞.

H. Weinberger [31] has proved that solutions with general non-negative compactly supported initial
data spread with the speed c∗ in the sense of (1.3)-(1.4), though the spreading rates to the left and
right may now be different.

The purpose of the present paper is to extend the result of [31] to the stationary random ergodic
case, and show that special solutions which generalize the notion of a pulsating front to random
media exist.

Deterministic spreading rates

Our first result concerns the asymptotic behavior of solutions to the Cauchy problem for (1.1) with
compactly supported initial data. We show that for sufficiently large initial data the solution develops
two diverging fronts that propagate with a deterministic asymptotic speed. Specifically, we prove
the following.

Theorem 1.1 Let w(t, x, ω) solve (1.1) with compactly supported deterministic initial data w0(x),
0 ≤ w0(x) ≤ 1. Let h ∈ (θ0, 1) and suppose that w0 ≥ h on an interval of size L > 0. There exist
deterministic constants c∗− < 0 < c∗+ such that for any ε > 0, the limits

lim
t→∞

inf
c∈[c∗−+ε,c∗+−ε]

w(t, ct, ω) = 1

and
lim
t→∞

sup
c∈(−∞,c∗−−ε]∪[c∗++ε,∞)

w(t, ct, ω) = 0

hold almost surely with respect to P, if L is sufficiently large. The constants c∗−, c
∗
+ are independent

of h and L.
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The condition that L be sufficiently large is necessary only to exclude the possibility of uniform
convergence to zero [17].

Using large deviation techniques, Freidlin, and Freidlin and Gärtner (see [11], section 7.4, [10,
12, 13, 14]) proved a similar asymptotic result in the case that f0(u) is of KPP-type satisfying
f(u) ≤ f ′(0)u (e.g. f0(u) = u(1 − u)). Moreover, the asymptotic speed can be identified by a
variational principle that arises from the linearized problem at u = 0. This asymptotic spreading
result has been extended recently to time-dependent random media in [27, 28]. The problem with a
KPP nonlinearity also admits homogenization, both in the periodic [23] and random [18, 22] cases.
However, in all aforementioned papers, the KPP condition f(u) ≤ f ′(0)u seems to be essential, and
the techniques do not extend to the present case where f vanishes when u is close to zero. To the
best of our knowledge Theorem 1.1 is the first result on the deterministic spreading rates of solutions
of reaction-diffusion equations with a non-KPP nonlinearity in a random medium.

Random traveling waves

Two generalizations of the notion of a traveling front in a uniform medium for general (non-periodic)
inhomogeneous media were proposed. Shen in [30], and Berestycki and Hamel in [3, 4] have intro-
duced generalized transition fronts (called wave-like solutions in [30]) – these are global in time
solutions that, roughly speaking, have an interface which “stays together” uniformly in time. On
the other hand, H. Matano has defined a generalized traveling wave as a global in time solution whose
shape is “a continuous function of the current environment” [25]. These notions are not equivalent:
there exist transition fronts of the KPP equation with constant coefficients that are not traveling
waves in the usual sense (and hence not generalized traveling waves in the sense of Matano as there
is only one environment in the case of a uniform medium and thus only one solution profile) [15, 16].

Matano’s definition was formalized by W. Shen in [30] as follows.

Definition 1.2 (see [30], Def. 2.2) A solution w̃(t, x, ω) : R × R × Ω → R of (1.1) is called a
random traveling wave if the following hold:

(i) For almost every ω ∈ Ω, w̃(t, x, ω) is a classical solution of (1.1) for all t ∈ R.

(ii) The function w̃(0, x, ω) is measureable with respect to ω.

(ii) 0 < w̃(0, x, ω) < 1, ∀x ∈ R.

(iii) limx→+∞ w̃(0, x, ω) = 0.

(iv) limx→−∞ w̃(0, x, ω) = 1.

(v) There exists a measureable function X̃(t, ω) : R × Ω → R such that

w̃(t, x, ω) = w̃(0, x− X̃(t, ω), πX̃(t,ω)ω).

The function W (x, ω) : R×Ω → R defined by W (x, ω) = w̃(0, x, ω) is said to generate the random
traveling wave.

The random function W (x, ω) is the profile of the wave in the moving reference frame defined by
the current front position X̃(t, ω). In the pioneering paper [30], Shen has established some general
criteria for the existence of a traveling wave in ergodic spatially and temporally varying media and
also proved some important properties of the wave. In particular, as shown in [30] (see Theorem B,
therein), Definition 1.2 of a random traveling wave generalizes the notion of a pulsating traveling
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front in the periodic case. More precisely, if f is actually periodic in x, then a random traveling
wave solution of (1.1) is a pulsating traveling front solution in the sense of [2, 32, 33].

However, the only example provided in [30] where the results of [30] ensure existence of a random
traveling wave is a bistable reaction-diffusion equation of the form

ut = uxx + (1 − u)(1 + u)(u− a(t)),

where a(t) is a stationary ergodic random process. As far as we are aware, no other examples of such
traveling waves in non-periodic media have been exhibited. In this paper we construct a Matano-
Shen traveling wave in a spatially varying ergodic random medium for (1.1) with an ignition-type
nonlinearity.

Theorem 1.3 There exists a random traveling wave solution w̃(t, x, ω) of (1.1) which is increasing
monotonically in time:

w̃t(t, x, ω) > 0 for all t ∈ R and x ∈ R.

Moreover, the interface X̃(t, ω) satisfies (i) w̃(t, X̃(t, ω), ω) = θ0 for all t ∈ R, and (ii) X̃(t+h, ω) >
X̃(t, ω) for all t ∈ R and h > 0, and

(iii) lim
t→∞

X̃(t, ω)

t
= c∗+ (1.5)

holds almost surely, where c∗+ is the same constant as in Theorem 1.1.

Monotonicity of the wave and the fact that the interface is moving to the right is the direct analog
of the corresponding properties of the periodic pulsating fronts.

Since X̃(t, ω) is increasing in t, we may define its inverse T̃ (x, ω) : R × Ω → R by

x = X̃(T̃ (x, ω), ω). (1.6)

This may be interpreted as the time at which the interface reaches the position x ∈ R. The following
Corollary says that the statistics of the profile of the wave as the wave passes through the point ξ
are invariant with respect to ξ:

Corollary 1.4 The function w̃(T̃ (ξ, ω), x+ ξ, ω) is stationary with respect to shifts in ξ.

This a direct analog of the corresponding property of a pulsating front in a periodic medium: the
profile of a pulsating front at the time T (ξ) it passes a point ξ is periodic in ξ.

We believe the present article gives the first construction of such a wave in a spatially random
medium. To construct the wave, we use a dynamic approach from [30] combined with some analytical
estimates needed to show that the construction produces a nontrivial result.

Generalized transition fronts

Our last result concerns existence of the transition fronts for (1.1) in the sense of Berestycki and
Hamel, and Shen, in general heterogeneous (non-random) media with the reaction rate uniformly
bounded from below and above. Let us recall first the definition of a generalized transition wave.

Definition 1.5 A global in time solution ṽ(t, x), t ∈ R, x ∈ R, of (1.1) is called a transition wave
if for any h, k ∈ (0, 1) with h > k, we have

0 ≤ θ+
k (t, ω) − θ−h (t, ω) ≤ C (1.7)
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for all t ∈ R, where

θ−h (t, ω) = sup{x ∈ R| ṽ(t, x′, ω) > h ∀x′ < x}

θ+
k (t, ω) = inf{x ∈ R| ṽ(t, x′, ω) < k ∀x′ > x} (1.8)

and C = C(h, k) is a constant independent of t and ω.

Roughly speaking, a transition wave is a global in time solution for which there are uniform, global-
in-time bounds on the width of the interface. Basic properties of transition waves were investigated
in [3, 4].

Theorem 1.6 Let f(x, u) be a nonlinearity such that gminf0(u) ≤ f(x, u) ≤ gmaxf0(u), with the
constants gmin > 0, gmax < +∞ and f0(u) an ignition-type nonlinearity. Then there exists a
transition front solution u(t, x), t ∈ R, x ∈ R, of (1.1) which is monotonically increasing in time:
ut(t, x) > 0. In addition, there exists a unique point X(t) such that u(t,X(t)) ≡ θ0, and a constant
p > 0 so that ux(t,X(t)) < −p for all t ∈ R.

As this paper was written we learned about the concurrent work by A. Mellet and J.-M. Roque-
joffre [26]. They consider the free boundary limit for (1.1) in an ergodic random medium in the
spirit of [8]. In particular, they also prove Theorem 1.6 as a necessary intermediate step as well as
other interesting results.

Let us point out that all of the results in this paper extend to the case of a bistable-type
nonlinearity, under certain restrictions. Specifically, we may let f have the form f(x, u) = g(x)f0(u)
with f0(0) = f0(θ0) = f0(1) = 0, f0(u) < 0 for u ∈ (0, θ0), f0(u) > 0 for u ∈ (θ0, 1), and f ′0(1) < 0.
Under the additional condition that

∫ 1

0
fmin(u) du =

∫ 1

0

(

min
x∈R

f(x, u)

)

du > 0, (1.9)

all of the results in Theorems 1.1, 1.3, and 1.6 apply. This condition is necessary to preclude the
phenomenon of wave-blocking, which can occur with a spatially-dependent bistable-type nonlinearity
(for example, see the work Lewis and Keener [20]). In particular, under the condition (1.9), one can
modify our argument to construct the time-monotonic solutions that are the building blocks for the
generalized transition fronts.

The paper is organized as follows. In Section 2, we study solutions to (1.1) that are monotone
increasing in time and prove Theorem 1.6. The main ingredients in the proof are Propositions 2.3
and 2.5 which show that the interface (the region where ε < u < 1 − ε, for some ε > 0) may not
be arbitrarily wide and must move forward with an instantaneous speed that is bounded above and
below away from zero. These estimates are also used later in the proof of the asymptotic spreading
and in the construction of the random traveling waves. In Section 3 we prove Theorem 1.1, first
for monotone increasing solutions and then for general compactly supported data. In Section 4 we
construct the random traveling wave and prove Theorem 1.3 and Corollary 1.4.

Throughout the paper we denote by C and K universal constants that depend only on the
constants gmin and gmax, and the function f0(u).
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2 Existence of a generalized transition front

Monotonic in time solutions

In this section we prove Theorem 1.6. The generalized transition wave is constructed as follows.
We consider a sequence of solutions un(t, x) of (1.1) (with f(x, u, ω) replaced by f(x, u) as in the
statement of the theorem) defined for t ≥ −n, with the Cauchy data

un(t = −n, x) = ζ(x− xn
0 ), ζ(x) := max(ζ̂(x), 0). (2.1)

The choice of the initial shift xn
0 is specified below while the function ζ̂(x) is positive on an open

interval and is a sub-solution for (1.1):

−ζ̂ ′′(x) = fmin(ζ̂(x)) ≤ f(x, ζ̂), (2.2)

with fmin(u) = gminf0(u) ≤ f(x, u). It is constructed as follows. For a given h0 ∈ (θ0, 1) and x ∈ R,
let ζ̂(x) satisfy

−ζ̂ ′′(x) = fmin(ζ̂(x)), ζ̂(0) = h0, ζ̂ ′(0) = 0,

with the convention that fmin(u) = 0 for u < 0 above. To fix ideas we may set h0 = (1 + θ0)/2 in
(2.2). Let us define z1 = min{x > 0 | ζ̂(x) = θ0} and z2 = min{x > 0 | ζ̂(x) = 0}. The function ζ̂
satisfies the following elementary properties

• ζ̂(−x) = ζ̂(x) for all x ∈ R

• 0 ≤ ζ̂(x) ≤ h0 = ζ̂(0) for all x ∈ [−z2, z2]

• ζ̂(x) is strictly concave for x ∈ (−z1, z1)

• ζ̂(−z2) = ζ̂(z2) = 0.

As in [24, 29] it follows that un(t, x) ≥ un(−n, x) for t ≥ −n, and un(t, x) is monotonically
increasing in time to ū ≡ 1.

Lemma 2.1 Let un(t, x) solve (1.1) with initial data (2.1) at time t = −n. Then, un(t, x) is strictly
increasing in t:

∂un

∂t
(t, x) > 0 for all t > −n, (2.3)

and, moreover,
lim
t→∞

un(t, x) = 1 locally uniformly in x. (2.4)

Proof. Since
−ζxx ≤ f(x, ζ),

the maximum principle implies that un(t, x) ≥ un(−n, x) = ζ(x) for all t > −n. Applying the
maximum principle to the function w(t, x) = un(t+ τ, x) − un(t, x), for τ > 0 fixed, we see that, as
w(−n, x) ≥ 0, we have w(t, x) > 0 for all t > −n; thus, un is monotonically increasing in time and
(2.3) holds.

Since un is monotone in t, the limit ū(x) = limt→∞ un(t, x) exists and satisfies

ūxx = −f(x, ū), 0 < ū(x) ≤ 1, maxx ū > h0 > θ0. (2.5)

Note that ūxx = 0 on the set {ū < θ0}, so ū is linear there. It is easy to see that this implies that
this set must be empty because of the lower bound ū ≥ 0 and the fact that maxx ū > h0 > θ0.
Hence, we have ū ≥ θ0.

Now, (2.5) implies that ū is concave. Since θ0 ≤ ū ≤ 1, this implies ū is constant, so that
f(x, ū) = −ūxx ≡ 0. This fact and maxx ū > h0 implies that ū ≡ 1. The local uniformity of the
limit follows from standard regularity estimates for u. �
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The initial shift

The initial shift xn
0 is normalized by requiring that

un(0, 0) = θ0. (2.6)

Lemma 2.2 There exists xn
0 so that un(t, x) satisfies (2.6) and limn→+∞ xn

0 = −∞. Moreover,
there exists N0 and ε > 0 so that xn

0 < −εn for all n > N0.

Proof. Let vn(t, x; y) be the solution of (1.1) with the initial data vn(t = −n, x; y) = ζ(x− y) – we
are looking for x0 such that vn(0, 0;x0) = θ0. Note that (2.3) implies vn(0, 0; 0) > θ0. In addition,
the function ψ(x) = exp(−λ(x− ct)) is a super-solution for (1.1) provided that

cλ ≥ λ2 +Mgmax, (2.7)

with the constant M > 0 chosen so that f0(u) ≤ Mu. Let us choose λ > 0 and c > 0 sufficiently
large so that (2.7) holds. The maximum principle implies that there exists a constant C > 0 so that

vn(t, x; y) ≤ C exp{−λ(x− y − c(t+ n))},

and thus

vn(0, 0; y) ≤ C exp{λ(y + cn)} ≤
θ0
2

for y < −cn−K with a constant K > 0. By continuity of vn(0, 0; y) as a function of y there exists
x0 ∈ (−cn−K, 0) such that vn(0, 0;x0) = θ0. In order to see that xn

0 → −∞ as n → +∞, observe
that vn(t, x; y) ≥ wn(t, x; y), where wn(t, x; y) is the solution of the Cauchy problem

∂wn

∂t
=
∂2wn

∂x2
+ gminf0(wn), wn(−n, x; y) = ζ(x− y). (2.8)

Note that if y stays uniformly bounded from below as n → +∞: y ≥ K for all n, then, as in
(2.4), wn(0, 0; y) → 1, which contradicts (2.6), thus xn

0 → −∞ as n → +∞. The refined estimate
xn

0 < −εn follows the results of [29] on the exponential in time convergence of the solution of (2.8)
to a sum of two traveling waves of (2.8) moving with a positive speed cmin > 0 to the right and left,
respectively. In particular, this implies that if y > −ncmin/2 then for n sufficiently large we have
wn(0, 0; y) > (1 + θ0)/2 > θ0 which is a contradiction. �

The standard elliptic regularity estimates imply that the sequence of functions un(t, x) is uni-
formly bounded, together with its derivatives, so that along a suitable subsequence the limit u(t, x) =
limk→+∞ unk

(t, x) is a global in time and space, monotonically increasing solution to (1.1). The main
remaining difficulty is to show that u(t, x) has the correct limits as x→ ±∞ and its “interface width”
is uniformly bounded in time so that it is indeed a transition front in the sense of Berestycki and
Hamel. The rest of the proof of Theorem 1.6 is based on the following estimates for any solution of
the Cauchy problem (1.1) with the initial data u(0, x) = ζ(x − x0), with any x0 ∈ R (we set here
the initial time t0 = 0 for convenience).

The interface width estimate

For h ∈ (θ0, 1) and k ∈ (0, θ0), let X l
h(t) and Xr

k(t) be defined by

X l
h(t) = max

{

x > x0 | u(t, x′) > h ∀x′ ∈ [x0, x)
}

Xr
k(t) = min

{

x > x0 | u(t, x′) < k ∀x′ ∈ (x,∞)
}

(2.9)

Our goal is to show that the width of the front can be bounded by a universal constant depending
only on fmax and fmin.
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Proposition 2.3 Let u(t, x) be a solution of (1.1) with the initial data u(0, x) = ζ(x−x0) for some
x0 ∈ R. For any h ∈ (θ0, 1) and k ∈ (0, θ0], there are constants Kh ≥ 0 and C ≥ 0 depending only
on h, k, fmax and fmin such that for any t > Kh we have u(t, x0) > h, and

0 < Xr
k(t) −X l

h(t) ≤ C < +∞ (2.10)

for all t > Kh. We can take Kh = 0 for h ∈ (θ0, h0).

Let us note that the time delay Kh is introduced simply because initially the solution may be below
h everywhere so that X l

h(t) is not defined for small times.

The interface steepness bound

The next crucial estimate provides a lower bound for the steepness of the interface. First, we use
the following lemma to define the interface location.

Lemma 2.4 Let u(t, x) be a solution of (1.1) with the initial data u(0, x) = ζ(x−x0) for some x0 ∈
R. For all t > 0, there exists a continuous function (the right interface) X(t), t ≥ 0, monotonically
increasing in t and satisfying: x0 < X(t), u(t,X(t)) = θ0 and u(t, x) < θ0 for all x > X(t),
u(t, x) > θ0 for all x ∈ (x0, X(t)).

Proof: This follows from the strict monotonicity of u with respect to time and the maximum
principle which precludes X(t) from having jumps since f(x, u) = 0 for 0 ≤ u ≤ θ0. �

Proposition 2.5 Let u(t, x) be a solution of (1.1) with the initial data u(0, x) = ζ(x−x0) for some
x0 ∈ R. Then the following hold.

(i) There are constants p > 0 and τ0 ≥ 0 depending only on gmax, gmin, and the function f0 such
that

ux(t,X(t)) < −p (2.11)

for all t > 0, and
u(t, x+X(t)) ≤ θ0e

−px (2.12)

for all x > 0 and t ≥ τ0.
(ii) There exists a constant δ > 0 depending only on gmax, gmin, and the function f0 such that

ut(t,X(t)) > δ (2.13)

for all t > 1. Moreover, for any t1 > 0, there are constants H > 0 and L > 0 such that

0 < L < Ẋ(t) < H < +∞ for all t ≥ t1. (2.14)

The constants L and H depend only on t1, g
min, gmax and the function f0.

The end of the proof of Theorem 1.6

Theorem 1.6 is an immediate consequence of Propositions 2.3 and 2.5. Consider the sequence of
functions un(t, x) defined for t ≥ −n as solutions of the Cauchy problem for (1.1) with the initial
data (2.1) and xn

0 fixed by normalization (2.6). As we have mentioned above, the standard elliptic
regularity estimates imply that there exists a subsequence nk → +∞ so that unk

(t, x) converge
locally uniformly, together with its derivatives, to a limit u(t, x) which is a global in time and space
solution to (1.1), monotonically increasing in time. Moreover, the interface locations Xn(t) converge
toX(t) such that u(t,X(t)) = θ0, 0 < L < Ẋ(t) < H, andX(0) = 0. The normalization (2.6) implies
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that u(0, 0) = θ0, and, in addition, the bounds (2.11)-(2.13) hold for the limit u(t, x). The upper
bound (2.12) implies immediately that u(t, x+X(t)) → 0 as x→ +∞ uniformly in t. It remains only
to check that u(t, x+X(t)) → 1 as x → −∞ uniformly in t. To this end, assume that there exists
ε0 > 0 and a sequence of points tm ∈ R, and xm → −∞ such that u(tm, xm +X(tm)) < 1−ε0. This,
however, contradicts (2.10) with k = θ0 and h = 1 − ε0. Therefore, u(t, x) is, indeed, a transition
wave. �

A convenient way to restate some of the properties of the functions un(t, x) we will need later is
as follows. Let us define the class of admissible non-linearities

G = {f(x, u) = g(x)f0(u) : gmin ≤ g(x) ≤ gmax, g(x) ∈ C(R)}.

Lemma 2.6 Given 0 < gmin ≤ gmax < +∞ and f0(u), there exists p > 0 and a non-increasing in x
function v(x), such that v(0) = θ0, v

′(0) < −p,

lim
x→−∞

v(x) = 1, (2.15)

lim
x→+∞

v(x) = 0, (2.16)

and the following holds: given any solution un(t, x) of (1.1) with f(x, u) ∈ G, and with the initial
data (2.1) which satisfies the normalization (2.6), and for any R > 0, we have

un(t, x+Xn(t)) ≥ v(x), ∀ x ∈ [−R, 0], (2.17)

un(t, x+Xn(t)) ≤ v(x), ∀ x ∈ [0,∞], (2.18)

for all t ≥ 0, if n is sufficiently large, depending only on R, gmin, and gmax. The function v(x)
depends only on the constants gmax and gmin, and the function f0(u).

Proof: Setting v(x) = θ0e
−px for x ≥ 0, with p > 0 as in Proposition 2.5 we see that the upper

bound (2.18) follows from (2.12), and (2.16) is obviously satisfied, as well as a strictly negative upper
bound for v′(0) .

In order to define v(x) for x < 0 we consider a solution of (1.1) with f ∈ G, which satisfies (2.6),
and with initial data as in (2.1), and choose t1 = 1 and find the corresponding L as in Proposition 2.5,
so that Ẋn(t) ≥ L for t ≥ −n+ 1. Now, Xn(t) ≥ x0

n + L(t+ n− 1), and thus for t ≥ 0, n ≥ NR =
1 +R/L, and x ∈ [−R, 0] we have

x+Xn(t) ≥ x0
n + L(t+ n− 1) −R ≥ x0

n.

For h ∈ [θ0, 1), let X l
n,h(t) be defined by (2.9). We use the convention that X l

n,h(t) = −∞ if

un(t, x0
n) < h. For any h′ ∈ [θ0, 1), X

l
n,h(t) is finite for all t > 0 and for all h ∈ [θ0, h

′], if n > N(h′) is

sufficiently large, depending only on gmin and h′. This follows directly from Proposition 2.3. Now,
for x < 0 and n ≥ 1, define

vn(x; f) = sup

{

h ∈ [θ0, 1) : sup
t≥0

(

Xn(t) −X l
n,h(t)

)

≤ |x|

}

. (2.19)

We indicate above explicitly the dependence of vn on the nonlinearity f(x, u). Then we set

v(x) = inf
f∈G

inf
n≥1+|x|/L

vn(x; f).

The set of possible values of h over which the supremum is taken in (2.19) contains θ0. Therefore,
v(x) ≥ θ0 for all x < 0. From (2.19) it is easy to see that vn(x; f) is non-increasing in x (for x < 0)
for each f ∈ G, and vn(0; f) = θ0. Hence v(x) is also non-increasing in x and v(0) = θ0.
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Next we show that v(x) → 1 as x → −∞. For any h ∈ [θ0, 1], Proposition 2.3 implies that for
all f ∈ G we have

sup
t≥0

(

Xn(t) −X l
n,h(t)

)

< C(h)

for some finite constant C(h), depending only on gmin and gmax, provided that n > N(h), which
ensures that un(0, x0

n) ≥ h. So, for x such that both x < −C(h) and 1 + |x|/L > N(h), we have
v(x) > h. Since h may be chosen arbitrarily close to 1, it follows that limx→−∞ v(x) = 1.

Finally, in order to see that (2.17) holds, fix R > 0 and f ∈ G, and let un(t, x) be the solution of
the corresponding Cauchy problem. By definition of v,

v(x) ≤ vn(x; f) for all x ∈ [−R, 0],

provided that n ≥ 1 +R/L. Therefore,

Xn(t) −X l
n,h(t) ≤ −x (2.20)

for all h ∈ [θ0, v(x)], n ≥ 1 +R/L, and all t ≥ 0. Hence, X l
n,h(t) ≥ x+Xn(t) ≥ xn

0 so that

un(t, x+Xn(t)) ≥ h for all h ∈ [θ0, v(x)], (2.21)

and for all t ≥ 0 and n ≥ 1 +R/L. This proves (2.17). �

Bounds for the location of level sets

In order to finish the proof of Theorem 1.6 it remains to prove Propositions 2.3 and 2.5. We need
first to establish some simple bounds on the location of the level sets of the function u(t, x). Let cmin

and cmax be the unique speeds of the traveling wave solutions of the constant coefficient equations

−cqx = qxx + fmin(q), q(−∞) = 1, q(+∞) = 0,

and
−cqx = qxx + fmax(q), q(−∞) = 1, q(+∞) = 0,

respectively. The next lemma will allow us to relate the position X l
h(t) to X l

h′(t− s) with s > 0 and
h′ < h – this allows us to control the width of the front in the back, where u is close to 1.

Lemma 2.7 Let δ > 0 and let 0 ≤ u(t, x) ≤ 1 satisfy (1.1) for t > 0. Suppose, in addition, that
u(0, x) > δ + θ0 for all x ∈ [xL, xR]. If σ = |xR − xL| is sufficiently large, depending on δ and fmin,
then for any h ∈ (θ0, 1) there are constants β > 0 and τ1 > 0, such that

X l
h(t) ≥ xR + cmint− β (2.22)

for all t ≥ τ1. The constants β and τ1 depend only on h, δ, σ, and fmin.

Proof: This follows from the comparison principle and the stability results of [29]. Specifically, if σ
is sufficiently large, consider the function v(t, x) which solves the equation

vt = ∆v + fmin(v)

with the initial data
v(0, x) = (δ + θ0)χ[xL,xR](x)

at t = 0. Then, as we have mentioned, the results of [29] imply that v converges as t → +∞ to a
pair of traveling waves moving to the left and the right with speed cmin > 0. The convergence is
exponentially fast. Therefore, after some time τ1, which depends on h and on the convergence rate,
v(t, x) ≥ h on the set [xR, xR + cmint−β], for some constant β > 0. The maximum principle implies
that u(t, x) ≥ v(t, x) and (2.22) follows. �
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Corollary 2.8 Let h ∈ (θ0, 1). Let u(t, x) be as in Propositions 2.3 and 2.5. There is are constants
β ≥ 0, τ2 ≥ 0 depending only on h and fmin such that

X l
h(t) ≥ X l

h(t1) + max
(

0, cmin(t− t1) − β
)

(2.23)

for all t ≥ t1 ≥ τ2.

Proof: Let δ = h− θ0 and let σ be sufficiently large, as required by Lemma 2.7. Since u ≥ v where
v solves vt = ∆v+fmin(v) with the same initial data, there is a time τ2 > 0 depending only on fmin

and h such that u(t, x) ≥ v(t, x) ≥ h on the interval [x0, x0 + σ], for all t ≥ τ2. So, X l
h(t) ≥ x0 + σ

is well-defined and increasing for t ≥ τ2. The bound now follows from Lemma 2.7 with xL = x0,
xR = X l

h(t1), and replacing t = 0 with t1. �

Lemma 2.9 Suppose that u(0, x) ≤ Ce−cmax(x−x0) for all x ∈ R. Then there is a constant η > 0
depending only on fmax and C such that

X(t) ≤ x0 + cmaxt+ η, ∀ t > 0. (2.24)

Proof: This follows from the comparison principle and the stability results of [29]. �

Corollary 2.8 and Lemma 2.9 immediately imply that

cmin ≤ lim inf
t→∞

X(t)

t
≤ lim sup

t→∞

X(t)

t
≤ cmax. (2.25)

The proof of Proposition 2.5 (i): (2.11)

We begin the proof of Proposition 2.5 with the proof of (2.11). The strategy of this proof is a version
of the sliding method [7]. Suppose ε ∈ (0, cmin) is sufficiently small so that initially at time t = 0
we have

ux(0, X(0)) ≤ −εθ0 (2.26)

and
u(0, x+X(0)) ≤ θ0e

−εx for all x ≥ 0. (2.27)

The good times

Let us define the set of good times G when we can control the decay of the solution ahead of the
front by an exponential:

G =
{

t ≥ 0 : u(t, x+X(t)) ≤ θ0e
−εx for all x ≥ 0

}

. (2.28)

Note that if t ∈ G then ux(t,X(t)) ≤ −εθ0 and thus both (2.11) and (2.12) hold. Our goal is to
show that G = [τ0,+∞) for ε > 0 sufficiently small, and τ0 a universal constant.

Given s ∈ G and y > 0 set

ψ(t, x; s, y) = θ0e
−ε(x−ε(t−s)−y−X(s).

The difference w = ψ − u satisfies wt ≥ wxx in the region R = {(t, x) : x > X(t), t ≥ s} and
w(s, x) > 0 for x ≥ X(s). Therefore, for t− s small we have w(t, x) > 0 for x > X(t). On the other
hand, as lim inf t→+∞X(t)/t ≥ cmin > ε, there exists a time t and x > X(t) so that w(t, x) < 0. Let
us define the first time when ψ and u touch:

τy,s = sup{t > s : w(τ, x) > 0 for all x ≥ X(τ) and all τ ∈ [0, t)}. (2.29)

11



Note that τy,s > s for all y > 0. The maximum principle implies that the only point where the
functions u and ψ can touch is at the boundary, that is, at x = X(τy,s), where

u(τy,s, X(τy,s)) = ψ(τy,s, X(τy,s); s, y) = θ0,

so that, in particular,
X(τy,s) − ε(τy,s − s) − y −X(s) = 0.

In addition, we have w(τy,s, x+X(τy,s)) ≥ 0 for all x > 0. It follows that

u(τy,s, x+X(τy,s)) ≤ ψ(τy,s, x+X(τy,s); s, y) = θ0e
−εx

and thus τy,s ∈ G is a “good” time for any y > 0.

The bad times

Now, suppose that the set B = [0,∞) \G of “bad” times is not empty. Note that t ∈ B if and only
if there exists x > 0 so that

u(t, x+X(t)) > θ0e
−εx,

and thus B is open. Hence, B is an at most countable union of disjoint open intervals {(tj , t̃j)}
∞
j=1,

with tj, t̃j ∈ G. Observe that
t′j := lim

y↓0
τy,tj ≥ t̃j .

Indeed, as τy,tj > tj for all y > 0, otherwise we could find y > 0 so that tj < τy,tj < t̃j, which would
be a contradiction since τy,tj ∈ G for all y > 0. Since G is closed, t′j ∈ G.

Let us enlarge B to

B′ =

∞
⋃

j=1

(tj , t
′
j) ⊇ B.

We claim that the average front speed on each time interval [tj, t
′
j ] is small:

X(t) −X(tj) ≤ ε(t− tj), ∀ t ∈ [tj, t
′
j ]. (2.30)

Indeed, for any t ∈ (tj , t
′
j), any x ≥ X(t), and any y > 0 we have

u(t, x) < ψ(t, x; tj , y) = θ0e
−ε(x−ε(t−tj)−y−X(tj )).

Passing to the limit y ↓ 0 we obtain

u(t, x) ≤ ψ(t, x; tj , 0) = θ0e
−ε(x−ε(t−tj )−X(tj )) for all t ∈ [tj , t

′
j ], x ≥ X(t) . (2.31)

Evaluating this inequality at (t,X(t)), we obtain (2.30).
The key estimate we will need below is given by the following lemma.

Lemma 2.10 There exists a constant K > 0 which depends only on f0(u), g
min and gmax so that

for all j we have |t′j − tj| ≤ K.

We postpone the proof of this lemma for the moment and finish the proof of (2.11) first.
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A lower bound for the slope at the front

Using Lemma 2.10 we may prove the lower bound (2.11) for the slope at the front. Note that for
each “good” time t ∈ G this bound holds automatically, so we need only to look at “bad” times
t ∈ B. More generally, consider a time t ∈ B ′ so that t ∈ (tj, t

′
j) for some j. The function u(t, x) is

convex in x for x > X(t) – this is because uxx = ut > 0 in this region. Therefore, for all l > 0 we
have

ux(t,X(t)) ≤
u(t,X(t) + l) − u(t,X(t))

l
.

Let us choose l > 0 so that ψ(t,X(t) + l; tj , 0) = θ0/2, then, according to (2.31) we have

u(t,X(t) + l) ≤ ψ(t,X(t) + l; tj, 0) =
θ0
2
, (2.32)

and thus

ux(t,X(t)) ≤ −
θ0
2l
. (2.33)

However, the distance l can be computed explicitly:

X(t) + l − ε(t− tj) −X(tj) =
log 2

ε
,

and thus

l < ε(t′j − tj) +
log 2

ε
.

Lemma 2.10 and (2.33) imply now that for t ∈ B ′ we have an estimate

ux(t,X(t)) ≤ −
θ0

2(ε(t′j − tj) + ε−1log 2)
≤ −

θ0
2(εK + ε−1log 2)

, (2.34)

which is nothing but (2.11).

The proof of Lemma 2.10

Step 1. Reducing to large times. First, we note that if 0 ≤ tj ≤ T then t′j is bounded from
above. From Corollary 2.8, we have for t′j ≥ τ2,

X(t′j) ≥ x0 + cmin(t′j − τ2) − β,

while for 0 ≤ tj ≤ T ,

X(t′j) ≤ X(tj) + ε(t′j − tj) ≤ X(T ) + εt′j ≤ x0 + cmaxT + η + εt′j .

from Lemma 2.9. It follows that t′j − tj ≤ t′j ≤ (cmaxT + η + β + cminτ2)/(c
min − ε) if 0 ≤ tj ≤ T .

Hence, for a constant T to be chosen, we will assume that tj ≥ T for the rest of the proof of
Lemma 2.10.

Step 2. Forming a large plateau. Our next goal is to show that a large plateau develops
behind the front sufficiently fast. Without loss of generality, we assume tj ≥ T ≥ 1, for a constant T
to be chosen. Because tj is a “good” time, we have ux(tj, X(tj)) ≤ −εθ0. Elliptic regularity implies
that there exists a constant M so that |uxx| ≤ M for all t ≥ 1. Thus, at t = tj we have a lower
bound for u(t, x) immediately behind the front:

u(tj, x) ≥ θ0 − p(x−X(tj)) −
M

2
(x−X(tj))

2,
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with p = −εθ0. Now define δ := p2

4M and let σδ be the corresponding constant in Lemma 2.7.
Evaluating this inequality at xj = X(tj) − p/M we obtain

u
(

tj, X(tj) −
p

M

)

≥ θ0 +
p2

2M
= θ0 + 2δ.

Since u(t, x) is monotonic in t, we conclude that

u(t, xj) ≥ θ0 + 2δ for all t ≥ tj and xj = X(tj) −
p

M
.

Now take T sufficiently large so that X(T ) − p/M − 10σδ > 0. By Corollary 2.8, T may be chosen
to depend only on gmin, gmax, and f0. Therefore, for t ≥ tj ≥ T the function u(t, x) satisfies the
following differential inequality and boundary conditions on the interval (xj − 10σδ , xj) ⊂ [0,∞):

ut − uxx ≥ 0, u(t, xj − 10σδ) ≥ θ0, u(xj) ≥ θ0 + 2δ.

It follows that there exists a time τδ > 0 which depends only on δ so that u(tj + τδ, x) ≥ θ0 + δ for
all x ∈ (xj − σδ, xj). By Lemma 2.7 this forces the interface to move forward for t ≥ sj = tj + τδ at
the speed of at least cmin:

X(t) ≥ cmin(t− sj) +X(tj) − p/M − β (2.35)

for all t ≥ sj.
Step 3. Plateau catching up with the front. We claim that there exists a constant K so

that
t′j − tj ≤ K(1 + τδ). (2.36)

Indeed, according to (2.30), the average front speed on the interval (tj , t
′
j) is smaller than ε. Com-

bining this with (2.35), which says that on the interval [sj, t
′
j ] the average speed can not be too

small, leads to

X(tj) + ε(t′j − tj) ≥ X(t′j) ≥ cmin(t′j − tj − τδ) +X(tj) − p/M − β.

Thus, (2.36) holds in that case as well. Now, the conclusion of Lemma 2.10 follows. Note that since
ε < cmin is arbitrary, the constant K in that lemma can indeed be chosen to depend only on f0(u),
gmin and gmax. �

An upper bound for the front speed

The lower bound (2.11) on the slope of the front implies an upper bound on its speed in Proposi-
tion 2.5 (ii). Indeed, since ux(t,X(t)) ≤ −p < 0 for all t ≥ 0, regularity estimates imply that for
any t1 > 0 and any t ≥ t1,

Ẋ(t) = −
ut(t,X(t))

ux(t,X(t))
≤ sup

t≥t1

‖ut(·, t)‖∞
p

≤ H, (2.37)

with a constant H > 0, depending on t1, g
max, gmin, and f0.
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The proof of Proposition 2.5 (ii)

We may now prove (2.13), the lower bound on ut(t,X(t)). The standard elliptic regularity estimates
imply that for any t1 > 0, there exists a constant M > 0 so that ‖uxx(t, ·)‖∞ < M for all t > t1.
Therefore, we have for x < X(t), using (2.11):

u(t, x) ≥ u(t,X(t)) + ux(t,X(t))(x −X(t)) −
1

2
M(x−X(t))2

≥ θ0 − p(x−X(t)) −
1

2
M(x−X(t))2 (2.38)

for all t > t1. For h = θ0 + p2/2M and x = X(t) − p/M , this gives us

u(t, x) ≥ θ0 +
p2

2M
= h. (2.39)

Since u is monotone in time, this implies that there is t2 ≥ t1 such that for all t ≥ t2,

X l
h(t) ≥ X(t) − p/M. (2.40)

The time gap between t1 and t2 may be needed to allow u(t, x) go get above the value h on the
interval between the points x0 and X(t1) − p/M . However, this constant t2 depends only on fmin

and fmax. Indeed, Corollary 2.8 implies that for t2 ≥ τ2

X l
h(t2) ≥ x0 + max

(

0, cmin(t2 − τ2) − β
)

(2.41)

where τ2 and β depend only on fmin, fmax, and h. At the same time, Lemma 2.8 tells us that

X(t1) ≤ x0 + cmaxt1 + η. (2.42)

So, if t2 ≥ τ2 + (cmin)−1(β + cmaxt1 + η), (2.40) holds for all t ≥ t2.
Now let C = p/M . Let τ2 be as in Corollary 2.8. Suppose t ≥ t1 ≥ τ2. Then for all s ∈ [t1, t],

|Ẋ(s)| ≤ H, so
X(t1) ∈ [X(t) −H(t− t1), X(t)].

The constant H depends only on τ2. It follows from Corollary 2.8 that there is a constant β,
independent of t1 ≥ τ2, such that

X l
h(t1 + ∆t) ≥ X l

h(t1) + max
(

0, cmin(∆t) − β
)

(2.43)

for all ∆t > 0. So, if we choose, ∆t = (C + β)/cmin, (2.43) implies

X l
h(t1 + ∆t) ≥ X l

h(t1) +C ≥ X(t1).

The last inequality follows from (2.40) and our choice of C. Therefore, we have

u(t1 + ∆t,X(t1)) ≥ h,

and by the Mean Value Theorem there must a point t2 ∈ [t1, t1 + ∆t] such that

ut(t2, X(t1)) ≥ (h− θ0)/(∆t),

since u(t1, X(t1)) = θ0.
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Now, let t ≥ τ2 + 2∆t and set t1 = t − 2∆t ≥ τ2 (recall that ∆t is defined independently
of t1). Thus there exists a point x2 ∈ [X(t) − 2H∆t,X(t)] and t2 ∈ [t − 2∆t, t − ∆t] such that
ut(t2, x2) ≥ r > 0, where r = (h− θ0)/(∆t).

The function q(t, x) = ut(t, x) satisfies a PDE of the form

qt = ∆q + V (x, t)q

with q ≥ 0 and ‖V ‖∞ <∞. The Harnack inequality [19] implies that there is K depending only on
H, ∆t, and ‖V ‖∞ such that

q(t,X(t)) ≥ K sup
x2∈[X(t)−2H∆t,X(t)]

t2∈[t−2∆t,t−∆t]

q(t2, x2) ≥ Kr > 0.

Therefore, there is δ = Kr depending only on gmin, gmax, and f0 such that ut(t,X(t)) ≥ δ for all
t ≥ τ2 + 2∆t. Since ut(t,X(t)) > 0 for all t > 0, this implies (2.13). Finally, the lower bound
Ẋ(t) > L > 0 now follows from (2.11), (2.13), the first equality in (2.37), and the elliptic regularity
estimates for u.

The proof of Proposition 2.5 (i): (2.12)

In order to finish the proof of Proposition 2.5 it remains only to prove the upper bound (2.12). It is
a consequence of the lower bound Ẋ(t) ≥ L > 0 in (2.14). Let us recall the definitions of the set G
of “good” times and the “catching-up” times τy,s introduced in the proof of (2.11): see (2.28) and
(2.29).

Let η be as in Lemma 2.9, and set y = η + 1 and let τ0 = τy,0 ∈ G. Lemma 2.9 tells us that
X(t) ≤ x0 + cmaxt + η ≤ x0 + η + 1 if t ≤ (cmax)−1. It follows that τ0 ≥ (cmax)−1. There are
constants, L, H such that 0 < L ≤ Ẋ(t) ≤ H for all t ≥ (cmax)−1. This implies X((cmax)−1 + s) ≥
x0 + sL ≥ x0 + η + 1 + ε((cmax)−1 + s), if ε < L/2 and s ≥ (cmax)−1 + 2(η + 1)/L. Hence
(cmax)−1 ≤ τ0 ≤ (cmax)−1 + 2(η + 1)/L.

As Ẋ(t) is uniformly positive for t ≥ τ0, it follows that for ε ∈ (0, cmin) sufficiently small, ε < L/2,
the function τy,s is a continuous function of y for each s ≥ τ0 fixed, and, moreover, limy↓0 τy,s = s
for all s. Furthermore, as the front speed is bounded from above, limy→+∞ τy,s = +∞ for all such
s. We also recall that τy,s ∈ G for all y > 0 and s ≥ 0. It follows that [τ0,+∞) ⊂ G and thus (2.12)
holds for all t ≥ τ0. �

The proof of Proposition 2.3

The exponential bound (2.12) implies that for any k ∈ (0, θ0), the distance

0 < Xr
k(t) −X(t) ≤

1

p
|log k − log θ0|

is bounded uniformly in time. Combining this with (2.40), we see that there is a constant C1 such
that for any h ∈ (θ0, θ0 + p2/2M ] and any k ∈ (0, θ0), we have

Xr
k(t) −X l

h(t) ≤ C1 (2.44)

for all t ≥ t2. Recall that t2 depends only on gmax, gmin and the function f0.
Now suppose that h ∈ (θ0 + p2/2M, 1]. By comparing u with the function v solving vt =

vxx +fmin(v), we see that for t2 larger, if necessary (depending only on h, fmin, and fmax), we have
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u(t2, x0) > h. Thus, X l
h(t) is well-defined for t ≥ t2. Let δ = p2/2M , γ = θ0 + δ, and define d0 > 0

by

d0 = sup
t∈[0,t2+τ1]

(

X l
γ(t) −X l

h(t)
)

≤ X(t2 + τ1) − x0 ≤ C2 + cmax(t2 + τ1) < +∞

where τ1 is the constant from Lemma 2.7 with xL = x0 and xR = X l
γ(t2). If necessary, we may take t2

to be larger so that |xR−xL| = σ is sufficiently large according to Lemma 2.7. Now for any t ≥ t2+τ1,
we apply Lemma 2.7 with the starting time t0 = t− τ1, δ = p2/2M and xR = X l

γ(t− τ1) ≥ X l
γ(t2).

We conclude that
X l

γ(t) −X l
h(t) ≤ X l

γ(t) −X l
γ(t− τ1) − cminτ1 + β.

As we have already shown in the proof of Proposition 2.5(i), we have Ẋ(t) ≤ H for all t > t1.
Therefore, since t− τ1 ≥ t2 ≥ t1, we have

X l
γ(t) −X l

h(t) ≤ X l
γ(t) −X l

γ(t− τ1) − cminτ1 + β ≤ X(t) −X l
γ(t− τ1) − cminτ1 + β

= (X(t) −X(t− τ1)) +
(

X(t− τ1) −X l
γ(t− τ1)

)

− cminτ1 + β

≤ Hτ1 +
(

X(t− τ1) −X l
γ(t− τ1)

)

− cminτ1 + β ≤ Hτ1 + C1 − cminτ1 + β.

This holds for all t ≥ t2 + τ1. Therefore, for any t ≥ 0, we have

X l
γ(t) −X l

h(t) ≤ d0 +Hτ1 + C1 − cminτ1 + β

where the constants t2, τ1, H, d0, C1, c
min, and β depend only on gmax, gmin and the function f0.

So, the conclusion of Proposition 2.3 holds. �

3 Asymptotic spreading for the Cauchy problem

Spreading of monotonically increasing in time solutions

Now we return to equation (1.1) with a random reaction term, and we prove Theorem 1.1. We first
prove the result for monotone increasing solutions. Consider the solution to (1.1) with initial data
u0(x, ω) = ζ(x+ z1) at time t = 0. Recall from the definition of the function ζ that ζ(z1) = θ0 and
ζ(x) < θ0 for x > z1. Hence, we have u0(0, ω) = θ0. The initial data looks like a bump-function with
the right interface at the origin. For each realization ω ∈ Ω of the random medium, the following
hold:

• The solution u(t, x, ω) is strictly monotone increasing in t and all the estimates of Section 2
hold P-a.s.

• The function X+(t, ω) defined by u(t,X+(t, ω), ω) = θ0 and X+ ≥ 0 is well defined and
continuous. This defines uniquely the position of the right-moving interface.

• There are positive constants Cmin, Cmax, independent of ω such that for t > 1 we have
Cmin ≤ Ẋ+(t, ω) ≤ Cmax .

• For any ξ ≥ 0, the time at which “the interface reaches ξ”, denoted by T (ξ, ω), is well defined:

ξ = X+(T (ξ, ω), ω). (3.1)
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The first claim above follows from Lemma 2.1, the second one is a consequence of the maximum
principle and monotonicity of u(t, x, ω) in time. The last two claims are implied by (2.14). Similarly,
we may define the position X−(t, ω) of the left-moving interface by u(t,X−(t, ω), ω) = θ0 and
X−(t, ω) ≤ −2z1 for t ≥ 0.

The following proposition is a version of Theorem 1.1 for such monotonically increasing in time
solutions. We will then use a comparison argument to generalize this result to arbitrary non-negative
compactly supported initial data as claimed in Theorem 1.1.

Proposition 3.1 There are nonrandom constants c∗+ ∈ [cmin, cmax] and c∗− ∈ [−cmax,−cmin] such
that

lim
t→∞

X+(t, ω)

t
= c∗+, (3.2)

lim
t→∞

X−(t, ω)

t
= c∗− (3.3)

hold almost surely with respect to P, and in L1(Ω,P). For any ε > 0,

lim
t→∞

inf
c∈[c∗−+ε,c∗+−ε]

u(t, ct, ω) = 1 (3.4)

and
lim
t→∞

sup
c∈(−∞,c∗−−ε]∪[c∗++ε,∞)

u(t, ct, ω) = 0 (3.5)

hold almost surely with respect to P, and in L1(Ω,P).

Proof of Propositon 3.1

First, we explain that X+(t, ω) is F -measureable for each t. Let m be a positive integer. For each
m define the set of points {xm

j } = 2−m
Z. For m and t fixed, let

Am
j = {ω ∈ Ω | u(t, x, ω) ≤ θ0, ∀x ≥ xm

j }.

This is an F -measureable set, since it is a closed set in C(R; [gmin, gmax]) (in the uniform convergence
norm). Define the random variable

ηm(ω) = min
j

(

xm
j χAm

j
(ω)

)

(3.6)

where χ is the characteristic function. Since there are countably many terms in the minimization,
this is an F -measureable random variable. By definition, X+(t, ω) ≤ ηm(ω) ≤ X+(t, ω) + 2−m.
Also, ηm is nonincreasing in m. Therefore

X+(t, ω) = lim
m→∞

ηm(ω) (3.7)

and this must be F -measureable, since the limit of a sequence of measurable functions is also
measureable.

Next, we prove (3.2) by using the sub-additive ergodic theorem. Let us drop the superscript and
denote X(t, ω) = X+(t, ω). Given a positive integer m ∈ N, let u(m)(t, x, ω) be the solution to (1.1)
for t ≥ 0 with shifted initial data u(m)(x, 0, ω) = ζ(x+z1−m) – its right interface is located initially
at x = m. Let Xm(t, ω) ≥ m, t ≥ 0, denote the position of the corresponding right-moving interface:
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u(m)(t,Xm(t, ω), ω) = θ0. By Proposition 2.5, Xm(t, ω) satisfies the same properties as X(t, ω),
listed above. For ξ ≥ m, let Tm(ξ, ω) ≥ 0 denote the inverse of Xm(t, ω): u(m)(Tm(ξ, ω), ξ) = θ0.

Now, for a pair of non-negative integers m,n ∈ N, n ≥ m, define the family of random variables

qm,n(ω) = Tm(n, ω)

which is the first time the interface hits the position n, when started from position m. It is easy to
see that for any integer h ≥ 1, the following translation invariance holds:

qm+h,n+h(ω) = qm,n(πhω). (3.8)

The key observation in the proof of Proposition 3.1 is the following “near-subadditivity” lemma.

Lemma 3.2 There exists a constant α > 0 independent of ω such that

qm,r(ω) ≤ qm,n(ω) + qn,r(ω) + α (3.9)

holds for all pairs of integers 0 ≤ m < n < r.

We postpone the proof of this lemma for the moment and proceed with the proof of Proposition 3.1.
Using Lemma 3.2 we now show that there is a nonrandom constant q̄ such that the limit

lim
n→∞

1

n
q0,n(ω) = q̄

holds almost surely. Lemma 3.2 shows that the family {qn,m} is “almost” subadditive. In order to
turn it into a truly sub-additive family define a new family

q̂m,n = qm,n + β(n−m)1/2

with β sufficiently large to be chosen. The point here is that q̂m,n is a sub-linear correction of qm,n.
It also preserves translation invariance of qm,n: for any integer h > 0, we have, using (3.8):

q̂m+h,n+h(ω) = qm+h,n+h(ω) + β(n−m)1/2 = qm,n(πhω) + β(n−m)1/2 = q̂m,n(πhω).

Let α > 0 be as in (3.9) and choose β > 4α. Then for any integers 0 ≤ m < n < r the following
elementary inequality holds:

α+ β(r −m)1/2 − β(r − n)1/2 − β(n−m)1/2 ≤ 0

since r − n ≥ 1 and n − m ≥ 1. Lemma 3.2 implies that with this choice of β the family q̂m,n is
sub-additive: for any integers 0 ≤ m < n < r we have

q̂m,r = qm,r + β(r −m)1/2 ≤ qm,n + qn,r + α+ β(r −m)1/2

= q̂m,n + q̂n,r +
(

α+ β(r −m)1/2 − β(r − n)1/2 − β(n−m)1/2
)

≤ q̂m,n + q̂n,r.

Corollary 2.8 implies that q̂m,r is at most linear: 0 ≤ q̂m,r ≤ C(1 + (m − r)) for some constant
C > 0. As the group πn acts ergodically on Ω, we can apply the subadditive ergodic theorem (see,
e.g. [21]) to conclude that

lim
n→∞

1

n
q̂0,n = inf

n>0

1

n
E [q̂0,n] = q̄ (3.10)

19



holds almost surely, where q̄ is a deterministic constant. By definition of q̂, this implies that

lim
n→∞

1

n
q0,n = q̄

also holds almost surely. Since q0,n = T (n, ω) and X(t) is increasing in t, it is easy to see that, as a
consequence,

lim
t→∞

X(t, ω)

t
= (q̄)−1 := c∗+

holds almost surely. The fact that c∗+ ∈ [cmin, cmax] follows from (2.25). This proves (3.2), and the
proof of (3.3) is identical.

The fact that limits (3.4) and (3.5) hold is an immediate consequence of (3.2), (3.3) and the fact
that the width of the interface is bounded by a universal constant, as stated in Proposition 2.3. This
completes the proof of Proposition 3.1. �

The proof of Theorem 1.1

Now, we use comparison arguments to extend Proposition 3.1 to the case of any non-negative
deterministic initial data with a sufficiently large compact support. By “sufficiently large”, we mean
large enough so that the solution does not converge uniformly to zero (extinction). Lemma 2.1
implies that the condition u0(x) ≥ ζ(x − x0) with some x0 ∈ R is sufficient to guarantee that
extinction does not occur.

Let w0(x) be compactly supported with 0 ≤ w0 ≤ 1 and deterministic. Suppose that

w0(x) ≥ ζ(x− x0)

for some x0 ∈ R and let w(t, x, ω) solve (1.1) with initial data w0(x). For each t > 0, let X+(t, ω)
be the largest real number satisfying w(t,X+(t, ω), ω) = θ0.

If u(t, x, ω) solves the equation with initial data u(0, x, ω) = ζ(x− x0) ≤ w0(x), Proposition 3.1
applies to u(t, x, ω), and the maximum principle implies that w(t, x, ω) ≥ u(t, x, ω). Therefore,
w(t, x, ω) satisfies

lim
t→∞

inf
c∈[c∗−+ε,c∗+−ε]

w(t, ct, ω) ≥ 1.

Since w ≤ 1 for all t ≥ 0, this implies the first bound of Theorem 1.1.
For the other bound, observe that for every realization ω we have maxx∈R w(t = 1, x, ω) < c0 < 1

with a deterministic constant c0. The estimates in the previous section imply that there is a finite
time τ > 0 depending only on the properties of f such that

w(t = 1, x, ω) ≤ u(t = 1 + τ, x, ω), ∀x ∈ R.

Then the maximum principle implies that w(s, x, ω) ≤ u(s+ τ, x, ω) for all s ≥ 1. This implies

lim
t→∞

sup
c∈(−∞,c∗−−ε]∪[c∗++ε,∞)

w(t, ct, ω) ≤ 0.

Since w ≥ 0 for all t, this completes the proof of Theorem 1.1. �
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The proof of Lemma 3.2

Translation invariance (3.8) implies that it suffices to prove that (3.9) holds for m = 0. We first
show that there is an integer K > 0 independent of ω such that for all r, n a “delayed” version

q0,r(ω) ≤ q0,n(ω) + qn−j,r(ω) (3.11)

holds for j = min(K,n). Let h = maxx ζ(x) ∈ (θ0, 1) and defineX l
h(t) as in (2.9). By Proposition 2.3,

there is a constant C > 0, independent of ω such that

X l
h(t) ≥ X(t, ω) − C. (3.12)

Now let K be the smallest integer greater than C+ z2 + z1 (recall that ζ(x) = 0 for all |x| ≥ z2).
First, (3.11) obviously holds for n ≤ K as for such n it becomes

q0,r(ω) ≤ q0,n(ω) + qn−n,r(ω) = q0,n(ω) + q0,r(ω),

which is true since q0,n(ω) ≥ 0.
If n ≥ K then (3.12) implies that

u(T (n, ω), x, ω) ≥ h, ∀ x ∈ (−z1, n− C) ⊆ (−z1, n−K + z2).

On the other hand, we have

ζ(x+ z1 − (n−K)) = 0 for x /∈ (−z1, n−K + z2).

Therefore, if n ≥ K, we have

u(T (n, ω), x, ω) ≥ ζ(x+ z1 − (n−K)) = u(n−K)(0, x, ω), for all x ∈ R.

Since the equation is invariant with respect to t, the maximum principle implies that for any s ≥ 0,

u(T (n, ω) + s, x, ω) ≥ u(n−K)(s, x, ω),

thus X(T (n, ω) + s, ω) ≥ Xn−K(s). Now setting s = Tn−j(r, ω) = Tn−K(r, ω) we see that

X(T (n, ω) + Tn−K(r, ω)) ≥ Xn−K(Tn−K(r, ω)) = r.

Since X is increasing in t, this implies T (r, ω) ≤ T (n, ω) + Tn−K(r, ω) which establishes (3.11) for
n ≥ K. Thus, the claim holds for all n > 0.

Using the fact that u(n−j) is monotone in t and the estimates of the previous section, one can
show that there is a constant α > 0 independent of n and ω such that

u(n−j)(t, x, ω) ≥ ζ(x+ z1 − n), ∀x ∈ R, t ≥ α,

where j = min(K,n) is bounded independent of n and ω. This and the maximum principle imply
that

u(n−j)(α+ s, x, ω) ≥ u(n)(s, x, ω), ∀x ∈ R, s ≥ 0.

Thus, we have
qn−j,r(ω) ≤ qn,r(ω) + α

This inequality and (3.11) imply the desired result:

qm,r(ω) ≤ qm,n(ω) + qn,r(ω) + α.

This finishes the proof of Lemma 3.2. �
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4 Random Traveling Waves

Now we use the results of the previous sections to construct a random traveling wave solution to the
equation (1.1) and prove Theorem 1.3 and Corollary 1.4.

4.1 Construction of the Traveling Wave

The starting point comes from the proof of Theorem A(1) in [30]. We consider a family ũn(t, x, ω) of
solutions of the Cauchy problem (1.1) with the initial data ũn(t = −n, x, ω) = ζs(x− x̃n

0 (ω)). Here
ζs is the step function:

ζs(x) =

{

1, x < 0,
0, x ≥ 0,

and the shift x̃n
0 (ω) is fixed by the normalization, as in (2.6)

ũn(0, 0, ω) = θ0, ũn(0, x, ω) < θ0 for x > 0.

In this section we denote with tilde objects related to solutions with step-like initial data, while
those without tilde correspond to those arising from bump-like initial data.

The random initial shift x̃n
0 (ω) is measureable with respect to F and is uniquely defined. The

existence and uniqueness of x̃n
0 (ω) follows from the fact that if y1 < y2, the comparison principle

implies that the solution to (1.1) with initial data ζ s(x− y1) must be below the solution with initial
data ζs(x − y2). Therefore, for fixed n, the front position at time t = 0 is a monotonic function of
the shift, and the maximum principle implies that it is continuous. Then, using arguments similar
to those in the proof of Lemma 2.2 one can show that there must be a unique x̃n

0 (ω) ∈ [−cn, cn]
such that the normalization condition is satisfied, if c > 0 is sufficiently large.

The measureability of ũn and x̃n
0 may be proved as in [30] (Theorem A(1), therein). For the

readers’ convenience we sketch the proof now. For each n, let w(t, x, ω; y) solve (1.1) for t > −n
with initial data w(t = −n, x, ω) = ζs(x− y). Let ηn(y, ω) denote the largest real number satisfying
w(0, ηn, ω) = θ0. For each y, ηn(y, ω) is F -measureable. This may be proved as in the case of
X+(t, ω) in Section 3. Now we vary y, and we wish to choose y as a measurable function of ω so
that ηn(y, ω) = 0. For each positive integer k define {yk

l } = 2−k
Z. Let r be a positive integer, and

define
Ak,r

l = {ω ∈ Ω | |η(yk
l , ω)| ≤ 1/r}.

This is an F -measureable set since η(y, ·) is F -measureable. Then we set

x̂n
0 (ω) = lim

r→∞
lim

k→∞
min

l

(

yk
l χAk,r

l

(ω)
)

. (4.1)

Notice that
min

l

(

yk
l χAk,r

l

(ω)
)

is F -measureable, being the infimum of a countable set of measurable functions, and it is nonin-
creasing in k and nondecreasing in r. Thus, the limits in (4.1) exist and x̂n

0 (ω) is measurable. The
continuity of η(y, ω) with respect to y and the uniqueness of x̃n

0 imply that x̂n
0 (ω) = x̃n

0 (ω). So, x̃n
0

is F -measureable.
The measureability of ũn now follows from the measureability of x̃n

0 . Specifically, for fixed n and
t, the function ũn may be expressed as a composition of measureable maps:

ũn(t, · , ω) = G2 ◦G1(ω) (4.2)
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where G1(ω) : (Ω,F) → (R × Ω,B × F) is the measureable map G1(ω) = (x̃n
0 (ω), ω) and G2(y, ω) :

(R × Ω,B × F) → C(R; [0, 1]) is the measureable map defined by solution of (1.1) with initial data
ζs(x− y) (shifted by y) at time t = −n. Here B is the Borel σ-algebra on R.

Now, for x̃n
0 (ω) defined in this way, we wish to take a limit n→ +∞ to construct a global-in-time

solution. That is, we wish to define

w̃(t, x, ω) = lim
n→+∞

ũn(t, x, ω), (4.3)

and show that this is a traveling wave solution. The existence of a measureable limit, converging
locally uniformly, and satisfying the PDE follows from Shen [30] (see proof of Theorem A(1)) and
regularity estimates. A key observation in [30], is that the convergence (4.3) holds as n → +∞,
not just along a particular subsequence nk. This is because the functions ũn satisfy the following
monotonicity relation at t = 0:

ũn(0, x, ω) > ũm(0, x, ω), if x < 0

ũn(0, x, ω) < ũm(0, x, ω), if x > 0, (4.4)

almost surely, for any m > n. Therefore, the function w̃(t, x, ω) is measureable in ω. However, the
difficulty is that the limit might be trivial: one may obtain w̃(t, x, ω) ≡ θ0 for all x and t. Here is
where we invoke the results of the previous sections.

Uniform limits at infinity

Using Proposition 2.3 and the estimates of Section 2, we can show that the limit w̃ must be non-
trivial.

Lemma 4.1 Let w̃(t, x, ω) be constructed as above. Then we have

lim
x→∞

sup
ω∈Ω

w̃(t = 0, x, ω) = 0,

lim
x→−∞

inf
ω∈Ω

w̃(t = 0, x, ω) = 1. (4.5)

Proof. We prove (4.5) by comparing the functions ũn(t, x, ω) with functions un(t, x, ω) defined as
follows. For each n, let un(t, x, ω) denote the solution of (1.1) with initial data ζ(x − xn

0 ) at time
t = −n− 1 (note that un starts at time t = −n− 1, and not at t = −n). The function ζ(x) is the
bump-like sub-solution used in Section 2, so the solution un(t, x, ω) is strictly monotone increasing
in t and the estimates of Section 2 apply to un. The point xn

0 = xn
0 (ω) is a random shift depending

on n. For such initial data, let X+
n (t;xn

0 , ω) be defined as in Lemma 2.4. The random shift xn
0 (ω) is

chosen so that X+
n (0;xn

0 , ω) = 0 for all n ∈ N, ω ∈ Ω. This is the same normalization as applied to
ũn(t, x, ω). Existence of the shift xn

0 (ω) for each realization ω follows from Lemma 2.2.
Having defined the function xn

0 (ω), one can show that for each t > −n, there exists a unique
point ξn(t, ω) such that

ũn(t, x, ω) > un(t, x, ω), if x < ξn(t, ω)

ũn(t, x, ω) < un(t, x, ω), if x > ξn(t, ω).

That is, the graphs of the two solutions ũn and un intersect at time t only at the point x =
ξn(t, ω). This may be proved as in Lemma 4.6 of [30] using the results of Angenent [1] and the
maximum principle. Here we sketch the argument. Recall that despite the suggestive notation we
have initialized un(t, x, ω) at time t = −n−1 so that at time t = −n, we have 0 < un(t = −n, x, ω) <
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1 everywhere. Therefore, using the approximation argument employed in the proof of Lemma 4.6 of
[30], one may argue as if the graphs of un(t = −n, x, ω) and ũn(t = −n, x, ω) = ζs(x− x̃n

0 ) intersect
at only one point. Since the function q = ũn − un satisfies a PDE of the form

qt = ∆q + V (t, x)q

with ‖V ‖∞ <∞, Theorems A and B of [1] show that the zero set of the function q(t, x) is discrete
and cannot increase. Therefore, the graphs of ũn and un have only one intersection point for all
t > −n. We have chosen xn

0 and x̃n
0 so that at t = 0, the graphs intersect at x = 0: ũn(0, 0, ω) =

θ0 = un(0, 0, ω) almost surely. Therefore, ξn(0, ω) = 0, and both

ũn(0, x, ω) > un(0, x, ω), x < 0

and
ũn(0, x, ω) < un(0, x, ω), x > 0

must hold, P-a.s. for all n ∈ N.
Passing to the limit n→ +∞, we see that for x < 0 we have a lower bound for w̃(0, x, ω):

w̃(0, x, ω) ≥ lim inf
n→+∞

un(0, x, ω) := v−(x, ω).

It follows that from Lemma 2.6 that v−(x, ω) has a deterministic lower bound

lim
x→−∞

v−(x, ω) ≥ lim
x→−∞

v(x) = 1,

which holds for all realizations ω. Similarly, for x > 0, we have an upper bound for w̃(0, x, ω):

w̃(0, x, ω) ≤ lim sup
n→+∞

un(0, x, ω) := v+(x, ω)

and, once again, by Lemma 2.6, v+(x, ω) has a deterministic upper bound:

lim
x→+∞

v+(x, ω) ≤ lim
x→+∞

v(x) = 0,

that holds for all ω. This proves that (4.5) holds uniformly in ω. �

The translation property

We have now shown that w̃(t, x, ω) satisfies properties (i)-(iv) in the definition of a random traveling
wave. Since the limit w̃(t, x, ω) is nontrivial, the position of the interface X̃(t, ω) may be defined at
time t:

X̃(t, ω) = max{x ∈ R | w̃(t, x, ω) = θ0}. (4.6)

The measureability of X̃(t, ω) may be proved as in the case of x̃n
0 (ω).

Finally we show that the translation property (v) holds. The argument here is similar to that
in [30]; we sketch details for the readers’ convenience. Notice that we have not needed to assume
that the index n is an integer. In fact, we may assume n ∈ [1,∞). The key observation that leads
to property (v) is that for any m ≥ 0,

ũn(m,x+ θn(m,ω), ω) = ũn+m(0, x, πθn(m,ω)ω) (4.7)

must hold. Here, θn(m,ω) is the position of the interface at time t = m, when the solution is
initialized at time t = −n (with initial data ζ s(x− x̃n

0 )). One may think of πθn(m,ω)ω as the “current
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environment” associated with the “current location” of the interface (i.e. θn(m,ω)) at time t = m.
If at time t = m the interface is at x = θn(m,ω), then in the coordinate system shifted by θn(m,ω)
the interface is at the origin. So if we simply shift x by θn(m,ω) and t by m, equality (4.7) follows
from the definition of ũn and ũn+m, the fact that f(x+ θn(m,ω), u, ω) = f(x, u, πθn(m,ω)ω), and the

fact that x̃n
0 and x̃n+m

0 are uniquely defined. In particular, the function

v(t, x, πθn(m,ω)ω) := ũn(t+m,x+ θn(m,ω), ω) (4.8)

satisfies the shifted equation

vt = ∆v + f(x+ θn(m,ω), v, ω) = ∆v + f(x, v, πθn(m,ω)ω) (4.9)

with initial data v(t = −n−m,x, πθn(m,ω)ω) = ζs(x− x̃n
0 (ω) + θn(m,ω)). Since x̃n+m

0 (πθn(m,ω)ω) is
uniquely defined, this is the same initial value problem solved by ũn+m(t, x, πθn(m,ω)ω). Therefore,
uniqueness implies v = ũn+m. So, (4.7) holds.

By definition of w̃ and X̃, θn(m,ω) → X̃(m,ω) as n → ∞, and the left hand side of (4.7)
converges to

lim
n→∞

ũn(m,x+ θn(m,ω), ω) = w̃(m,x+ X̃(m,ω), ω). (4.10)

We claim that as n → ∞ the right hand side of (4.7) converges to w̃(0, x, πX̃(m,ω)ω). To see

this, we express the right hand side of (4.7) in the reference frame corresponding to X̃(m,ω). Let
ωm = πX̃(m,ω)ω and define

zn+m(t, x, ωm) = ũn+m(t, x+ X̃(t, ω) − θn(m,ω), πθn(m,ω)ω).

Then zn+m satisfies

zt = ∆z + f(x+ X̃(t, ω) − θn(m,ω), z, πθn(m,ω)ω) = ∆z + f(x, z, ωm) (4.11)

with initial condition zn+m(t = −n − m,x, ωm) = ζs(z − zn
0 ) where zn

0 = X̃(t, ω) − θn(m,ω) −
x̃n−m

0 . However, the function ũn+m(t, x, ωm) satisfies the same equation (4.11) with initial condition
ũn+m(t = −n−m,x, ωm) = ζs(z − x̃n

0 (ωm)). In general, zn
0 6= x̃n

0 (ωm), but the maximum principle
still implies that at time t = 0 either zn+m(0, x, ωm) > ũn+m(0, x, ωm) for all x, or zn+m(0, x, ωm) <
ũn+m(0, x, ωm) for all x. However, at time t = 0, ũn+m(0, 0, ωm) = θ0, and zn+m(0, θn(m,ω) −
X̃(t, ω), ωm) = θ0. Since limn→∞|θn(m,ω) − X̃(t, ω)| = 0, one can use the maximum principle to
show that in the limit n→ ∞, the two functions coincide:

lim
n→∞

zn+m(t, x, ωm) = lim
n→∞

ũn+m(t, x, ωm)

for all x and t, as in Lemma 4.5(2) of [30], since they both converge to θ0 at the point x = 0, t = 0.
By definition of w̃, the right hand side at t = 0 is simply

lim
n→∞

ũn+m(0, x, ωm) = w̃(0, x, πX̃(m,ω)ω).

This proves the claim (4.10) and establishes the translation property

w̃(0, x, πX̃(m,ω)ω) = w̃(m,x+ X̃(m,ω), ω).

This completes the construction of the traveling wave.

25



For later use, let us note that the preceding proof shows that the function W (x, ω) = w̃(0, x, ω)
satisfies

W (x, ω) ≥ v(x), ∀ x < 0

W (x, ω) ≤ v(x), ∀ x > 0

where v(x) is deterministic and defined in Lemma 2.6. Therefore, the translation property (v) implies
that

w̃(t, x+ X̃(t), ω) ≥ v(x), ∀ x < 0

w̃(t, x+ X̃(t), ω) ≤ v(x), ∀ x > 0

also holds.

Traveling waves and generalized transition waves

Let us point out that an alternative way to establish existence of a traveling wave is to use the
bump functions un(t, x, ω) and pass to the limit along a subsequence nk(ω) → +∞ to obtain a
non-trivial transition front u(t, x, ω) in the sense of Berestycki and Hamel. Theorem A of [30] shows
that a traveling wave will exist if there exists such a generalized transition front for each realization.
However, it may be necessary to take the limit along a different subsequence nk(ω) for each ω. This
may result in a transition wave u(t, x, ω) that may not be measureable. The advantage of using a
shift of the step function ζs(x) is that the sequence is monotone in the sense of (4.4) and the limit
(4.3) may be taken as n→ +∞. Therefore, the limit is measureable.

4.2 Properties of the traveling wave

Now, we finish the proof of Theorem 1.3 – it remains to show that the interface location X̃(t) is a
strictly increasing function and that the limit in (1.5) exists and is deterministic. First, we show
that

lim
t→∞

X̃(t, ω)

t
= c∗+ (4.12)

almost surely with respect to P, where c∗+ is the deterministic right spreading rate defined in Theo-
rem 1.1. Using Theorem 1.1 and the comparison principle, it is easy to show that

lim inf
t→∞

X̃(t, ω)

t
≥ lim inf

t→∞

X(t, ω)

t
= c∗+,

with probability one, since we may construct compactly supported initial data that fits below each
realization of the profile W (x, ω).

A super-solution for the traveling wave

For an upper bound, we construct a super-solution related to a construction in [9]. Let un(t, x, ω)
be the same family of monotone increasing solutions constructed in the proof of Theorem 1.3. Let
q ∈ (0, θ0/3) and set h = 1 − q. For v(x) defined as in Lemma 2.6, let yh = v−1(h) < 0 (i.e.
v(yh) = h). Pick n ∈ N sufficiently large so that Lemma 2.6 holds with R = −yh. Therefore, by
Lemma 2.6, we have

un(t, x+Xn(t), ω) ≥ v(x), ∀x ∈ [yh, 0],

un(t, x+Xn(t), ω) ≤ v(x), ∀x > 0, (4.13)
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for all t ≥ 0. For a function γ(t) to be chosen, define

ūn(t, x, ω) =

{

min(1, un(γ(t), x, ω) + q) x > Xn(γ(t)) − yh,
1 x ≤ Xn(γ(t)) − yh.

(4.14)

The function γ(t) will be chosen so that γ(0) > 0 and γ ′(t) > 1. We want to pick γ(t) so that ū is a
super-solution for t ≥ 0. By construction, ū now has a wave-like profile, and ū = 1 for x sufficiently
negative.

If un(γ(t), x, ω) ≥ h or x < Xn(γ(t)) − yh, then ūn(t, x, ω) = 1 ≥ w̃(t, x, ω). On the other hand,
if un(γ(t), x, ω) ≤ h and x ≥ Xn(γ(t)) − yh, then ū(t, x, ω) ≤ 1 and

∂ūn

∂t
−
∂2ūn

∂x2
− f(x, ūn) =

(

γ′(t) − 1
) ∂un

∂t
+ [f(x, un) − f(x, ūn)] . (4.15)

Now we show that the right hand side of (4.15) can be made non-negative for x ≥ Xn(γ(t))− yh, so
that ūn is a super-solution in this region.

By the properties of f , there exists s ∈ (0, θ0/3) such that f(x, u) − f(x, ū) ≥ 0 wherever
1 − s ≤ u ≤ ū ≤ 1. Note that such an s may be chosen independently of q and h. For such an s
fixed, (4.13) and the properties of v imply that there is β > 0 such that

{x ∈ [yh,∞) | un(γ(t), x +Xn(γ(t)), ω) ∈ [s, 1 − s]} ⊂ [−β, β] (4.16)

for all t ≥ 0. By Proposition 2.5, there is δ > 0 such that

∂un

∂t
(γ(t), Xn(γ(t)), ω) > δ.

This and the Harnack inequality imply that there is ε > 0 such that

∂un

∂t
(γ(t), x+Xn(γ(t)), ω) > ε, ∀x ∈ [−β, β], t ≥ 0. (4.17)

Now, if x ∈ [Xn(γ(t))−yh, Xn(γ(t))−β], then by (4.16) we have ūn(t, x) ≥ un(γ(t), x) ≥ 1−s, so
f(x, ūn) ≤ f(x, un), the last term on the right side of (4.15) is non-negative and thus (4.15) implies
that in this interval

∂ūn

∂t
−
∂2ūn

∂x2
− f(x, ūn) =

(

γ′(t) − 1
) ∂un

∂t
≥ 0, (4.18)

since γ′(t) ≥ 1.
If x ∈ [Xn(γ(t)) + β,+∞), then un(γ(t), x) ≤ s, so ūn(t, x) ≤ s + q < θ0. Hence f(x, un) =

f(x, ūn) = 0 in this region, so again (4.18) holds.
Finally, if x ∈ [Xn(γ(t)) − β,Xn(γ(t)) + β], the right side of (4.15) can be bounded below using

(4.17) by

∂tū− ūxx − f(x, ū) ≥
(

γ′(t) − 1
)

ε+ [f(x, u) − f(x, ū)] ≥
(

γ′(t) − 1
)

ε−Kq

where K > 0 is the Lipschitz constant for f . So if we choose γ ′(t) = 1 + Kq/ε, the right side is
non-negative. For γ(t) chosen in this way, we see that ūn is a super-solution wherever ū < 1, for all
t ≥ 0. Since un is monotone increasing in t, we may also choose γ(0) sufficiently large so that

ūn(0, x, ω) ≥ w̃(0, x, ω).

Therefore, the maximum principle implies that ūn(t, x, ω) ≥ w̃(t, x, ω) for all t ≥ 0. Hence, we have

lim sup
t→∞

X̃(t)

t
≤ lim sup

t→∞

Xn(γ(t))

t
= lim sup

t→∞

Xn(γ(t))

γ(t)

γ(t)

t
= c∗+

(

1 +
Kq

ε

)

= c∗+

(

1 +
K(1 − h)

ε

)

Since h can be chosen to be arbitrarily close to 1, the right side can be made arbitrarily close to c∗+.
Note that s and β can be chosen independently of h, so that the parameter ε does not become small
as h ↑ 1. This proves the upper bound and establishes (4.12).
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Monotonicity of the right interface

We now prove the last claim of Theorem 1.3 – that the interface X̃(t) always moves to the right.

Lemma 4.2 For almost every ω ∈ Ω, the function X̃(t, ω) is differentiable and strictly increasing
in t.

Proof: The maximum principle and the fact that f(x, u) = 0 for u ≤ θ0 implies that X̃ cannot have
jumps to the right:

lim sup
h→0+

X̃(t+ h, ω) ≤ X̃(t, ω). (4.19)

To see that X̃ is continuous and differentiable, note that

θ0 = w̃(t, X̃(t), ω) (4.20)

for all t. The function W (x, ω) = w̃(0, x, ω) satisfies

W (x, ω) > v(x), if x < 0

W (x, ω) < v(x), if x > 0,

P-almost surely, and vx(0) < −p for some constant p > 0. Therefore, we have

Wx(0, ω) = w̃x(t, X̃(t), ω) < −p < 0.

The Implicit Function Theorem applied to (4.20) implies that there is a C 1 function Y (t) such
that θ0 = w̃(Y (t + h), t + h, ω) for h sufficiently small, and Y (t) = X̃(t). This, combined with the
definition (4.6) and (4.19), implies that X̃(t) is continuous and that we may differentiate (4.20) to
obtain

X̃ ′(t, ω) = −
w̃t(t, X̃(t, ω), ω)

w̃x(t, X̃(t, ω), ω)
<∞.

This may also be written as

X̃ ′(t, ω) = −
Wxx(0, πX̃(t,ω)ω) + f(0,W (0, πX̃(t,ω)ω), πX̃(t,ω)ω)

Wx(0, πX̃(t,ω)ω)
.

We have already shown that there is a set of full measure Ω0 ⊂ Ω such that P(Ω0) = 1, and
X̃(t, ω)/t → c∗+ ≥ cmin > 0 for all ω ∈ Ω0 as t → +∞. If X̃(t) is not strictly increasing in time,

there are t1, t2 ∈ R such t2 > t1 and X̃(t1, ω0) = X̃(t2, ω0) for some ω0 ∈ Ω0. Then

w̃(t1, x, ω0) = W (x− X̃(t1, ω0), πX̃(t1,ω0)
ω0) = W (x− X̃(t2, ω0), πX̃(t2,ω0)

ω0) = w̃(t2, x, ω0)

holds for all x ∈ R. Hence, the function w̃(t, x, ω0) is periodic in t. This contradicts the fact that
X̃(t, ω)/t → c∗+ > 0 for all ω ∈ Ω0. Therefore, X̃(t + h, ω) > X̃(t, ω) for all t ∈ R, h > 0, ω ∈ Ω0.
The proof of Theorem 1.3 is now complete. �

Proof of Corollary 1.4

This follows immediately from the definition of X̃ and T̃ :

w̃(T̃ (ξ, ω), x + ξ, ω) = W (x+ ξ − X̃(T̃ (ξ, ω), ω), πX̃(T̃ (ξ,ω),ω)ω) = W (x+ ξ − ξ, πξω) = W (x, πξω).

The last term on the right side is stationary with respect to shifts in ξ since the action of π is
measure-preserving. �
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Monotonicity of the wave in time

The next lemma is a consequence of the monotonicity of the interface in time.

Lemma 4.3 For any h > 0, w̃(t + h, x, ω) > w̃(t, x, ω) holds for all x ∈ R and all t ∈ R, P-almost
surely.

Proof. Fix h > 0. Due to the translation property of the wave, we have

X̃(t+ h, ω) = X̃(t, ω) + X̃(h, πX̃(t,ω)ω), (4.21)

and thus
w̃(t, x, ω) = w̃(0, x− X̃(t, ω), πX̃(t,ω)ω),

and

w̃(t+ h, x, ω) = w̃(0, x− X̃(t+ h, ω), πX̃(t+h,ω)ω)

= w̃(0, x− X̃(t, ω) − X̃(h, πX̃(t,ω)ω), πX̃(t,ω)+X̃(h,π
X̃(t,ω)ω)ω)

= w̃(0, x− X̃(t, ω) − X̃(h, πX̃(t,ω)ω), πX̃(h,π
X̃(t,ω)ω)πX̃(t,ω)ω) = w̃(h, x − X̃(t, ω), πX̃(t,ω)ω).

Hence, it suffices to prove the result for t = 0. By definition of the wave, we have

w̃(h, x, ω) − w̃(0, x, ω) = lim
n→∞

ũn(h, x, ω) − ũn(0, x, ω). (4.22)

The translation property implies that

ũn(h, x, ω) = ũn(0, x− X̃(h, ω), πX̃(h,ω)ω).

The function
vn(t, x, ω) = ũn(t, x− X̃(h, ω), πX̃(h,ω)ω)

satisfies
∂tv = ∆v + f(x− X̃(h, ω), v, πX̃(h,ω)ω) = ∆v + f(x, v, ω),

which is the same equation as satisfied by ũn(t, x, ω). Moreover, at the initial time t = −n, we have

vn(t = −n, x, ω) = ζs(x− zn(ω)),

where zn(ω) = X̃(h, ω) + x̃n
0 (πX̃(h,ω)ω). Observe that if zn(ω) ≤ x̃n

0 (ω), then

ζs(x− zn(ω)) = vn(t = −n, x, ω) ≤ ũn(t = −n, x, ω) = ζs(x− x̃n
0 (ω)). (4.23)

In this case, the maximum principle would imply that vn(0, x, ω) ≤ ũn(0, x, ω) for all x ∈ R.
We also know that vn(0, X̃(h, ω), ω) = θ0 – this follows from the definition of vn. However,

ũn(0, x, ω) < θ0 for all x > 0. Therefore, since X̃(h, ω) > 0 (by Lemma 4.2), inequality (4.23) cannot
hold, so we must have

zn(ω) > x̃n
0 (ω),

or, equivalently
x̃n

0 (πX̃(h,ω)ω) > x̃n
0 (ω) − X̃(h, ω).

The maximum principle implies that vn(0, x, ω) > ũn(0, x, ω) for all x ∈ R, which means that

ũn(0, x− X̃(h, ω), πX̃(h,ω)ω) − ũn(0, x, ω) > 0
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for all x and n. Then from (4.22) we see that

w̃(h, x, ω) − w̃(0, x, ω) = lim
n→∞

ũn(h, x, ω) − ũn(0, x, ω)

= lim
n→∞

ũn(0, x− X̃(h, ω), πX̃(h,ω)ω) − ũn(0, x, ω) ≥ 0

for all x ∈ R. Then the maximum principle implies strict inequality: w̃(h, x, ω) > w̃(0, x, ω) for all
x ∈ R. �

This completes the proof of Theorem 1.3.
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á température d’ignition, Preprint, 2007.

[27] J. Nolen and J. Xin, Variational principle of KPP front speeds in temporally random shear flows
with applications, Comm. Math. Phys., 269, 2007, 493–532.

[28] J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time
random flows, Preprint, 2007.

[29] J.-M. Roquejoffre, Eventual monotonicity and convergence to traveling fronts for the solutions
of parabolic equations in cylinders, Ann. Inst. Henri Poincaré 14, No. 4 1997, pp. 499-552.
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