
Localization and quantum ergodicity for Schrödinger operators on
large graphs

Math 790-90 (graduate minicourse), Fall 2023

Class meetings: Nov 6 – Dec 6, MW 10:05–11:20, Physics 205

Instructor: Nicholas Cook (he/him/his)

nickcook@math.duke.edu

Office hours (Physics 029A): Tu 11:30–12:30; WeFr 1–2, or by appointment.

Course description. For many large or infinite-dimensional random (or random-like) opera-
tors, the eigenvectors/eigenfunctions display one of two opposite behaviors:

(1) Localization: the vector is essentially supported on a bounded set of coordinates or a
bounded region of space.

(2) Delocalization: the `2-mass of the vector is uniformly distributed over all coordinates.

We consider Schrödinger operators H : `2(X)→ `2(X) on large or infinite graphs G = (X,E),
taking the form H = −∆ + V , where ∆ is the discrete Laplacian ∆f(x) =

∑
y∼x(f(y)− f(x)),

with the sum running over the neighbors of x in the graph, and the potential V is a multiplication
operator (diagonal matrix). Such H can be viewed as the Hamiltonian for a quantum mechanical
system with state space X.

An important case is where G is the infinite d-dimensional lattice, with vertices X = Zd and
nearest-neighbor edges, and the diagonal entries of V are iid random variables. This is the
original model of the physicist P.W. Anderson [8], who was interested in insulating/conducting
properties of crystals with impurities, which translate to localization/delocalization of eigen-
vectors of H. Anderson predicted a sharp transition between localization and delocalization
for d ≥ 2 as the energy level or the strength of the disorder V varies [8], though this remains
mostly conjectural. A similar transition has been conjectured for random band matrices [18].

In a different direction motivated by questions in quantum chaos, works of Brooks–Lindenstrauss
[14] and Anantharaman–Le Masson [6] have shown that, in two different senses, eigenvectors
are asymptotically delocalized when G = Gn is a sequence of large regular graphs converging
locally (in the Benjamini–Schramm sense) to the infinite tree. The result of [6] can be viewed as
a discrete analogue of Shnirelman’s celebrated Quantum Ergodicity Theorem [25] establishing
delocalization for a density-one sequence of eigenfunctions for the Laplace–Beltrami operator
on suitable compact manifolds.1

Outline of topics. The first lecture will be an overview (background and motivation, state-
ment of main results, preliminaries on graph spectra). Mostly drawn from the first chapters
of the books [5, 1], Sarnak’s survey on quantum chaos [22], and Bourgade’s survey on random
band matrices [11].

Following that the minicourse will be in two parts:

I. (Delocalization) Lectures ≈2–5 will focus on locally tree-like regular graphs, mainly
following Anantharaman’s book [5], which is available here (free download on Duke
network).

1Namely, smooth compact manifolds without boundary for which the geodesic flow is ergodic with respect
to the Liouville measure.

1

https://services.math.duke.edu/~nickcook/
https://ems.press/books/zlam/237
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• The Brooks–Lindenstrauss delocalization result [14] (we’ll follow [19] and [5, Ch.
4]);
• The quantum ergodicity theorem of Anantharaman–Le Masson [6] (following [5,

Ch. 4] and/or [7])
• Time permitting / recommended further reading:

– Construction of localized eigenvectors by Alon–Ganguly–Srivastava [2];
– Irregular graphs and the non-backtracking walk operator [5, Ch. 6];
– Entropic argument of Backhausz–Szegedy for convergence of eigenvectors to

Gaussian waves [9], [5, Ch. 7].
II. (Localization) Lectures≈6–9 will focus on the lattice Zd, covering the multiscale analysis

approach of Fröhlich–Spencer [17] to prove localization in any dimension at sufficiently
low energy levels. This includes:
• Case of random potential with bounded density (as covered in the notes [20]);
• Elements of the Bourgain–Kenig argument for Bernoulli potential [13];
• Time permitting: Recent developments [16, 21] for cases d = 2, 3 based on unique

continuation principles for discrete harmonic functions [15].

Prerequisites. The lectures should be accessible to mathematics graduate students with back-
ground in real analysis (Math 631) and some prior exposure to probability at the undergraduate
level. Prior study of spectral theory (at the level of Reed–Simon) would be helpful, especially
for understanding results in the literature, but I’ll try to minimize its role by reducing to
quantitative finite-dimensional problems (where the real ideas happen) as quickly as possible.

Requirements for credit. To receive credit for the course, students have the option to either

A. Write up solutions to six problems that will be posted with lecture notes – three from
part I of the course and three from part II – to be turned in at the end of the semester.

B. Select a paper to read outside of class and meet with me one-on-one to discuss it at the
end of the semester. A list of suggestions follows below, or you can suggest your own.

Suggestions for independent reading.

(1) Quantum chaos and related topics:
• The original proof of Anantharaman–Le Masson based on semiclassical analysis on

locally tree-like graphs, as covered in [5, Ch. 4].
• The proof based on the non-backtracking operator, as covered in [4] and [5, Ch. 6].
• Proof of the random waves conjecture for random regular graphs by Backhaus–

Szegedy [5, Ch. 7].
• Construction of localized eigenvectors on expanders of high girth by Alon–Ganguly–

Srivastava [2] and Alon–Wei [3]. (These results mean some extra assumption is
needed in order to strengthen the Anantharaman–Le Masson theorem to a quantum
unique ergodicity statement.)
• Existence of continuous spectrum for random graphs [10]

(2) Random Schrödinger operators on the lattice
• Unique continuation principle for planar discrete harmonic functions [15] (see also

[16, Section 3] for an extension to random Schrödinger operators)
• The Wegner estimate for Bernoulli potential: [13, Section 5], [16, Section 5]. Per-

haps start with the short proof sketch in [12, Section 4].
• Aizenman–Molchanov’s fractional moment method approach: [24, Sections 4–5].
• Fractional moment method applied to random band matrices: [23]
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