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Universality Circular law Singularity probability

Talk outline

1 Universality for (global eigenvalue statistics of non-hermitian)
random matrices

2 Random regular digraphs (adjacency matrices), and conjectured
limiting spectral distributions

3 Two results:

Circular law for signed random regular digraphs

Bound on singularity probability for random regular digraphs
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The circular law for i.i.d. matrices

Definition (i.i.d. matrix)

Let x be a C-valued random variable with

E x = 0, E |x |2 = 1.

For each n, let Xn = (xij)1≤i,j≤n have entries that are i.i.d. copies of x .

Theorem (Mehta, Girko, Edelman, Bai, Bai–Silverstein, Pan–Zhou,
Götze–Tikhomirov, Tao–Vu ’08)

Let {λk(Xn)}nk=1 be the eigenvalues of Xn.
Define the (rescaled) empirical spectral distribution (ESD) of Xn:

µn :=
1

n

n∑
k=1

δ 1√
n
λk (Xn).

Almost surely, µn ⇒ 1
π 1BC(0,1) dxdy.
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The circular law for i.i.d. matrices

Figure: Circular law universality class: eigenvalue plots for randomly generated
5000× 5000 matrices using Bernoulli random variables (left) and Gaussian
random variables (right). Figure by Philip Matchett Wood.
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The r.r.d. matrix ensemble

n large, d ∈ [n]

Mn,d :=
{
n × n matrices, entries ∈ {0, 1},

all row and column sums equal to d
}

=
{

adjacency matrices of d-regular digraphs on n vertices
}


1 0 0 1
0 1 0 1
0 1 1 0
1 0 1 0

 Let A ∈Mn,d uniform random.
“Random regular digraph (r.r.d.) matrix”

N. Cook
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Simulations

Figure: Empirical eigenvalue distributions for simulated 8000× 8000 rescaled
r.r.d. matrices 1√

d
A for d = 3 (left), 10 (middle), and 100 (right). Predictions

from the oriented Kesten–McKay law are plotted in red.
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Circular law for signed r.r.d. matrices

We consider signed r.r.d. matrices A ◦ X = (aijxij), where

A ∈Mn,d is an r.r.d. matrix,

X is an i.i.d. matrix with ±1 Bernoulli entries, independent of A.

Theorem (C. ’15)

Fix p ∈ (0, 1) and put d = bpnc. Then as n→∞, the empirical spectral
distribution of 1√

d
A ◦ X converges weakly in probability to the uniform

measure on BC(0, 1).

Stated for i.i.d. signs, but the proof only needs the entries of X to
have 4 + ε finite moments.

Work in progress: remove X , extend to sparse case d = o(n)
(more on this later).
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How does one prove circular laws?

Girko’s Hermitization approach

For a Borel probability measure µ, define the log potential:

Uµ(z) :=

∫
C

log |λ− z |dµ(λ).

Two sides to why this is useful:

1) Borel measures on C are characterized by their log-potentials:

µ =
1

2π
∆Uµ.

2) Determinant identity:

n∏
i=1

|λi (M)| = | det(M)| =
n∏

i=1

si (M)

where s1(M) ≥ · · · ≥ sn(M) are the singular values.
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How does one prove circular laws?

Putting these together:

For a sequence of n × n matrices (Mn)n≥1, to show
µn = 1

n

∑n
i=1 δλi (Mn) converges, suffices to show pointwise

convergence of

Uµn(z) =

∫
C

log |λ− z |dµn(λ) =
1

n

n∑
i=1

log |λi (Mn − zIn)|

=
1

n

n∑
i=1

log si (Mn − zIn) =

∫
R+

log(s)dνMn−zIn(s).

Gain: νMn−zIn are ESDs of Hermitian random matrices, which are
(for our purposes) well understood.

Loss: s 7→ log(s) /∈ BC (R+), has singularities at 0 and ∞.

N. Cook
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Proof outline

For a signed r.r.d. matrix An ◦ Xn, write νn,z = ν 1√
d
An◦Xn−zIn .

Step 1: Show νn,z converges weakly in probability to a deterministic
limit νz for all z ∈ C.

i.e. ∀f ∈ BC (R+), ∀ε > 0,

P
(∣∣∣∣∫

R+

f dνn,z −
∫
R+

f dνz

∣∣∣∣ > ε

)
= o(1)

Step 2: Prove bounds on extreme singular values.

2a) Show s1( 1√
d
An ◦ Xn − zIn) = O(1) with high probability (w.h.p.)

2b) Show sn( 1√
d
An ◦ Xn − zIn) ≥ n−C w.h.p.

N. Cook
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Step 1: weak convergence of singular value distributions

Step 1: prove weak convergence of empirical singular value distributions

νn,z = ν 1√
d
A◦X−zI =

1

n

n∑
i=1

δsi ( 1√
d
A◦X−zI ).

Idea (following Tran–Vu–Wang ’10):

Replace A with a 0/1 matrix

B = (bij)1≤i,j≤n, bij i.i.d. Bernoulli(d/n)

independent of X . B ◦ X has i.i.d. entries.

Note A
d
=B| {B ∈Mn,d}.

For a “bad event” B we can bound

P(A ∈ B) = P(B ∈ B|B ∈Mn,d) ≤ P(B ∈ B)

P(B ∈Mn,d)
.

N. Cook
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Step 1: a comparison trick

For a “bad event” B we can bound

P(A ∈ B) = P(B ∈ B|En,d) ≤ P(B ∈ B)

P(B ∈Mn,d)
.

Lemma (Tran)

P
(
B ∈Mn,d

)
= exp

(
− O(n

√
d)
)
.

Want to show: for any f ∈ BC (R+), ε > 0,

P
(∣∣∣∣∫

R+

f dνn,z −
∫
R+

f dνz

∣∣∣∣ > ε

)
= o(1)

Denoting ν̃n,z = ν 1√
d
B◦X−zI , it suffices to show

P
(∣∣∣∣∫

R+

f d ν̃n,z −
∫
R+

f dνz

∣∣∣∣ > ε

)
� e−Cn

√
d .
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Step 1: a comparison trick

Want to show: P
(∣∣∣∫R+

f d ν̃n,z −
∫
R+

f dνz

∣∣∣ > ε
)
� e−Cn

√
d .

Desired bound is too small to apply work of Bourgade–Yau–Yin ’12
on the local law.

Instead we go back to an argument of Guionnet–Zeitouni ’00:

Lemma: if f : R+ → R is convex and 1-Lipschitz, then

F = B 7→
∫
R+

fdν 1√
d
B◦X−zI

is convex and 1-Lipschitz on Mn(C) (in Frobenius norm).
Applying Talagrand’s isoperimetric inequality:

P
(
|F (B)− EF (B)| ≥ ε

)
= O(e−cεnd).

Extend to general f by an approximation argument.

This argument applies for A drawn uniformly from any set
S ⊂Mn({0, 1}) satisfying P(B ∈ S) ≥ exp

(
−o(nd)

)
.

N. Cook
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Step 2: smallest singular value

Consider a random n × n matrix of the form

M = A ◦ X + B

with: X i.i.d., A fixed 0/1 matrix, B fixed.

We control the lower tail of sn(M) under a quasirandomness
hypothesis on A
(“super-regularity”, c.f. Szemerédi’s regularity lemma).

Theorem (C. ’15)

Assume A satisfies [quasirandomness hypothesis], ‖B‖ = O(
√
n), and

|xij | = O(1) for all i , j ∈ [n]. Then for all t > 0,

P
(
sn(M) ≤ tn−1/2

)
. t + n−1/2.

Similar result by Rudelson–Zeitouni for the case that xij are
Gaussian, under a weaker expansion-type assumption on A.

From (C. ’14): the r.r.d. matrix A is super-regular w.h.p.

N. Cook
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Extension to sparse, unsigned r.r.d. matrix?

We can extend the argument for Step 1 (convergence of singular
value distributions) to the r.r.d. matrix A with d = nε.
The main difficulty is to obtain control of the least singular value.
In this direction we have the following:

Theorem (C. ’14)

There are absolute constants C , c > 0 such that the following holds.
If C log2 n ≤ d ≤ n

2 , then

P(sn(A) = 0) = O(d−c).

(We can take c = .05.)

Conjecture

There are constants C , c > 0 such that for any d ∈ [3, n − 3],

P(sn(A) = 0) ≤ Cn−c .

N. Cook
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Spectral concentration from classical concentration

Proofs of upper bounds on s1(M) = ||M||op reduce to an application
of concentration of measure.

Proofs of lower bounds on sn(M) = ||M−1||−1op reduce to the
application of anti-concentration or “small ball” estimates.

Theorem (Anti-concentration for random walks, Erdős ’40s)

Let ξ1, . . . , ξn be i.i.d. uniform Bernoulli signs, and x ∈ Rn. Then for any a ∈ R,

P
( n∑

j=1

ξjxj = a

)
.
∣∣{j : xj 6= 0}

∣∣−1/2
.

More sophisticated bounds have been developed by Tao–Vu and
Rudelson–Vershynin using Inverse Littlewood-Offord theory.

This is our hammer – where is the nail?
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Local symmetries: switchings (after McKay)

In a regular digraph, we can change between

at vertices i1, i2, j1, j2 and preserve d-regularity.

In the adjacency matrix, this corresponds to switching between

I2 :=

(
1 0
0 1

)
, J2 :=

(
0 1
1 0

)
(1)

at the (i1, i2)× (j1, j2) minor.

Idea: apply several independent switchings, encode outcomes with
i.i.d. signs ξj .

N. Cook



Universality Circular law Singularity probability Anti-concentration Switchings Illustration Concentration

Where is the nail?

j π(j)


1 1 · · · 1 1 1 · · · 1 0 0 · · · 0 0 · · ·
2 1 · · · 1 0 0 · · · 0 1 1 · · · 1 0 · · ·

...
...

Co(1, 2) Ex(1, 2) Ex(2, 1)

π

Conditional on R3, . . . ,Rn, the only randomness is in the choice of sets
Ex(1, 2), Ex(2, 1).

Let π : Ex(1, 2)→ Ex(2, 1) uniform random bijection.

Conditional on π, independently resample the 2× 2 minors M(1,2)×(j,π(j)).

N. Cook
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Where is the nail?

j π(j)


1 1 · · · 1 1 0 · · · 1 0 1 · · · 0 0 · · ·
2 1 · · · 1 0 1 · · · 0 1 0 · · · 1 0 · · ·

...
...

Co(1, 2) Ex(1, 2) Ex(2, 1)

π

In the randomness of the resampling, R1 · u is a random walk
with steps uj − uπ(j). (Found the nail!)

Key technical proposition: normal vectors u have small level sets.

Combining this with the randomness of π guarantees most steps are non-zero.

What if Ex(1, 2) is small?
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Concentration and expansion properties

Problem: what if vertices 1, 2 have large codegree?

Solution: use the method of exchangeable pairs for concentration of
measure (Chatterjee ’06) with a “reflection” coupling to show
codegrees concentrate around d2/n.

Also obtain control on edge densities:

For S ,T ⊂ [n] and ε ≥ 0,

P

(∣∣∣∣∣ e(S ,T )
d
n |S ||T |

− 1

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− cε2

1 + ε

d

n
|S ||T |

)
.

In recent work with Larry Goldstein and Toby Johnson, we obtain
exponential tail bounds for more general statistics using size biased
couplings.

Allowed us to extend a bound λ2(A) = O(
√
d) on the second

eigenvalue of a random regular (undirected) graph to allow
d = O(n2/3) (previous results were limited to d = o(n1/2)).

N. Cook
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Summary of toy problem

To show
P
(
R1 ∈ span(R3, . . . ,Rn)

)
= o(1)

we defined a coupling (M, M̃, π, ξ) on an enlarged probability space,

with M
d
= M̃, and sought to show

P
(
R̃1 ∈ span(R3, . . . ,Rn)

∣∣M) = o(1).

1 The randomness of M: Ex(1, 2) is large with high probability.

2 The randomness of π: the random walk R̃1 · u takes many steps with
high probability.

3 The randomness of ξ = (ξ1, . . . , ξn) (encoding the resampling of
2× 2 minors): used with Erdős’ anti-concentration bound to finish
the proof.

N. Cook
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