Random regular digraphs: singularity and spectrum

Nick Cook, UCLA

Probability Seminar, Stanford University November 2, 2015

Talk outline

- Universality for (global eigenvalue statistics of non-hermitian) random matrices
- Random regular digraphs (adjacency matrices), and conjectured limiting spectral distributions
- Two results:
 - Circular law for signed random regular digraphs
 - Bound on singularity probability for random regular digraphs

The circular law for i.i.d. matrices

Definition (i.i.d. matrix)

Let x be a \mathbb{C} -valued random variable with

$$\mathbb{E} x = 0, \qquad \mathbb{E} |x|^2 = 1.$$

For each n, let $X_n = (x_{ij})_{1 \le i,j \le n}$ have entries that are i.i.d. copies of x.

Theorem (Mehta, Girko, Edelman, Bai, Bai–Silverstein, Pan–Zhou, Götze–Tikhomirov, Tao–Vu '08)

Let $\{\lambda_k(X_n)\}_{k=1}^n$ be the eigenvalues of X_n . Define the (rescaled) empirical spectral distribution (ESD) of X_n :

$$\mu_n := \frac{1}{n} \sum_{k=1}^n \delta_{\frac{1}{\sqrt{n}} \lambda_k(X_n)}.$$

Almost surely, $\mu_n \Rightarrow \frac{1}{\pi} \mathbb{1}_{B_{\mathbb{C}}(0,1)} dxdy$.

The circular law for i.i.d. matrices

Figure: Circular law universality class: eigenvalue plots for randomly generated 5000×5000 matrices using Bernoulli random variables (left) and Gaussian random variables (right). Figure by Philip Matchett Wood.

Circular law

Circular law

Bernoulli

Circular law Bernoulli Ginibre

iid, heavier tails (Bordenave, Caputo, Chafaï '10) Circular law iid, finite 2nd moment (Tao-Vu '08) Bernoulli Ginibre Dependent entries?

iid, heavier tails (Bordenave, Caputo, Chafaï '10) Circular law iid, finite 2nd moment (Tao-Vu '08) Uniform doubly-stoch. (Nauven '12) Bernoulli Ginibre Dependent entries?

iid, heavier tails (Bordenave, Caputo, Chafaï '10) Circular law iid, finite 2nd moment (Tao-Vu '08) Uniform doubly-stoch. (Nauven '12) Bernoulli Unconditional log-concave Ginibre (Adamczak, Chafaï 13) Dependent entries?

iid, heavier tails (Bordenave, Caputo, Chafaï '10) Circular law iid, finite 2nd moment (Tao-Vu '08) Uniform doubly-stoch. (Nauven '12) Bernoulli Unconditional log-concave Ginibre (Adamczak, Chafaï 13) Exchangeable array + moment hypothesis Dependent entries? (Adamczak, Chafaï, Wolff '14)

The r.r.d. matrix ensemble

- n large, $d \in [n]$
- $\mathcal{M}_{n,d} := \big\{ n \times n \text{ matrices}, \quad \text{entries} \in \{0,1\},$ all row and column sums equal to $d \big\}$ $= \big\{ \text{adjacency matrices of } d\text{-regular digraphs on } n \text{ vertices} \big\}$

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{pmatrix}$$

Let $A \in \mathcal{M}_{n,d}$ uniform random.

"Random regular digraph (r.r.d.) matrix"

iid, heavier tails (Bordenave, Caputo, Chafaï '10) Circular law iid, finite 2nd moment (Tao-Vu '08) Uniform doubly-stoch. (Nauven '12) Bernoulli Unconditional log-concave Ginibre (Adamczak, Chafaï 13) Exchangeable array + moment hypothesis Dependent entries? (Adamczak, Chafaï, Wolff '14)

iid, heavier tails (Bordenave, Caputo, Chafaï '10) Oriented Circular law iid, Kesten-McKay law finite 2nd moment rrd matrix (conjectured) (Tao-Vu '08) $d \rightarrow \infty$ d fixed Uniform doubly-stoch. (Nauven '12) Sum of d iid Bernoulli Haar unitaries Unconditional log-concave (Basak, Dembo '12) Ginibre (Adamczak, Chafaï 13) Exchangeable array + moment hypothesis Dependent entries? (Adamczak, Chafaï, Wolff '14)

Simulations

Figure: Empirical eigenvalue distributions for simulated 8000×8000 rescaled r.r.d. matrices $\frac{1}{\sqrt{d}}A$ for d=3 (left), 10 (middle), and 100 (right). Predictions from the oriented Kesten–McKay law are plotted in red.

Circular law for signed r.r.d. matrices

We consider signed r.r.d. matrices $A \circ X = (a_{ij}x_{ij})$, where

- $A \in \mathcal{M}_{n,d}$ is an r.r.d. matrix,
- X is an i.i.d. matrix with ± 1 Bernoulli entries, independent of A.

Theorem (C. '15)

Fix $p \in (0,1)$ and put $d = \lfloor pn \rfloor$. Then as $n \to \infty$, the empirical spectral distribution of $\frac{1}{\sqrt{d}}A \circ X$ converges weakly in probability to the uniform measure on $B_{\mathbb{C}}(0,1)$.

- Stated for i.i.d. signs, but the proof only needs the entries of X to have $4 + \varepsilon$ finite moments.
- Work in progress: remove X, extend to sparse case d = o(n) (more on this later).

How does one prove circular laws?

Girko's Hermitization approach

For a Borel probability measure μ , define the *log potential*:

$$U_{\mu}(z) := \int_{\mathbb{C}} \log |\lambda - z| d\mu(\lambda).$$

Two sides to why this is useful:

1) Borel measures on $\mathbb C$ are characterized by their log-potentials:

$$\mu = \frac{1}{2\pi} \Delta U_{\mu}.$$

Determinant identity:

$$\prod_{i=1}^n |\lambda_i(M)| = |\det(M)| = \prod_{i=1}^n s_i(M)$$

where $s_1(M) \ge \cdots \ge s_n(M)$ are the singular values.

How does one prove circular laws?

Putting these together:

• For a sequence of $n \times n$ matrices $(M_n)_{n \ge 1}$, to show $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(M_n)}$ converges, suffices to show pointwise convergence of

$$egin{aligned} U_{\mu_n}(z) &= \int_{\mathbb{C}} \log |\lambda - z| d\mu_n(\lambda) = rac{1}{n} \sum_{i=1}^n \log |\lambda_i(M_n - zI_n)| \ &= rac{1}{n} \sum_{i=1}^n \log s_i(M_n - zI_n) = \int_{\mathbb{R}_+} \log(s) d
u_{M_n - zI_n}(s). \end{aligned}$$

- Gain: $\nu_{M_n-zI_n}$ are ESDs of *Hermitian* random matrices, which are (for our purposes) well understood.
- Loss: $s \mapsto \log(s) \notin BC(\mathbb{R}_+)$, has singularities at 0 and ∞ .

Proof outline

For a signed r.r.d. matrix $A_n \circ X_n$, write $\nu_{n,z} = \nu_{\frac{1}{\sqrt{d}}A_n \circ X_n - zI_n}$.

Step 1: Show $\nu_{n,z}$ converges weakly in probability to a deterministic limit ν_{τ} for all $z \in \mathbb{C}$.

i.e. $\forall f \in BC(\mathbb{R}_+), \ \forall \varepsilon > 0$,

$$\mathbb{P}\left(\left|\int_{\mathbb{R}_+} f \, d
u_{n,z} - \int_{\mathbb{R}_+} f \, d
u_z \right| > arepsilon
ight) = o(1)$$

Step 2: Prove bounds on extreme singular values.

- 2a) Show $s_1(\frac{1}{\sqrt{d}}A_n \circ X_n zI_n) = O(1)$ with high probability (w.h.p.)
- 2b) Show $s_n(\frac{1}{\sqrt{d}}A_n \circ X_n zI_n) \geq n^{-C}$ w.h.p.

Proof outline

For a signed r.r.d. matrix $A_n \circ X_n$, write $\nu_{n,z} = \nu_{\frac{1}{\sqrt{d}}A_n \circ X_n - zI_n}$.

Step 1: Show $\nu_{n,z}$ converges weakly in probability to a deterministic limit ν_z for all $z \in \mathbb{C}$.

i.e. $\forall f \in BC(\mathbb{R}_+), \ \forall \varepsilon > 0$,

$$\mathbb{P}\left(\left|\int_{\mathbb{R}_+} f \, d
u_{n,z} - \int_{\mathbb{R}_+} f \, d
u_z\right| > arepsilon
ight) = o(1)$$

Step 2: Prove bounds on extreme singular values.

- 2a) Show $s_1(\frac{1}{\sqrt{d}}A_n \circ X_n zI_n) = O(1)$ with high probability (w.h.p.)
- 2b) Show $s_n(\frac{1}{\sqrt{d}}A_n \circ X_n zI_n) \geq n^{-C}$ w.h.p.

Step 1: weak convergence of singular value distributions

Step 1: prove weak convergence of empirical singular value distributions

$$\nu_{n,z} = \nu_{\frac{1}{\sqrt{d}}A \circ X - zI} = \frac{1}{n} \sum_{i=1}^{n} \delta_{s_i(\frac{1}{\sqrt{d}}A \circ X - zI)}.$$

Idea (following Tran-Vu-Wang '10):

Replace A with a 0/1 matrix

$$B = (b_{ij})_{1 \le i,j \le n}, \quad b_{ij} \text{ i.i.d. Bernoulli}(d/n)$$

independent of X. $B \circ X$ has i.i.d. entries.

• Note $A \stackrel{d}{=} B | \{ B \in \mathcal{M}_{n,d} \}.$

For a "bad event" \mathcal{B} we can bound

$$\mathbb{P}(A \in \mathcal{B}) = \mathbb{P}(B \in \mathcal{B}|B \in \mathcal{M}_{n,d}) \leq \frac{\mathbb{P}(B \in \mathcal{B})}{\mathbb{P}(B \in \mathcal{M}_{n,d})}.$$

Step 1: a comparison trick

For a "bad event" ${\cal B}$ we can bound

$$\mathbb{P}(A \in \mathcal{B}) = \mathbb{P}(B \in \mathcal{B}|\mathcal{E}_{n,d}) \leq \frac{\mathbb{P}(B \in \mathcal{B})}{\mathbb{P}(B \in \mathcal{M}_{n,d})}.$$

Lemma (Tran)

$$\mathbb{P}\left(B\in\mathcal{M}_{n,d}
ight)=\expig(-\mathit{O}(n\sqrt{d})ig).$$

Want to show: for any $f \in BC(\mathbb{R}_+)$, $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\int_{\mathbb{R}_+} f \ d
u_{n,z} - \int_{\mathbb{R}_+} f \ d
u_z
ight| > arepsilon
ight) = o(1)$$

Denoting $\widetilde{\nu}_{n,z} = \nu_{\frac{1}{\sqrt{d}}B \circ X - zI}$, it suffices to show

$$\mathbb{P}\left(\left|\int_{\mathbb{R}_+} f \ d\widetilde{\nu}_{n,z} - \int_{\mathbb{R}_+} f \ d\nu_z\right| > \varepsilon\right) \ll e^{-Cn\sqrt{d}}.$$

Step 1: a comparison trick

Want to show:
$$\mathbb{P}\left(\left|\int_{\mathbb{R}_+} f \ d\widetilde{\nu}_{n,z} - \int_{\mathbb{R}_+} f \ d\nu_z\right| > \varepsilon\right) \ll \mathrm{e}^{-Cn\sqrt{d}}.$$

- Desired bound is too small to apply work of Bourgade-Yau-Yin '12 on the local law.
- Instead we go back to an argument of Guionnet–Zeitouni '00:
 - ullet Lemma: if $f:\mathbb{R}_+ o\mathbb{R}$ is convex and 1-Lipschitz, then

$$F = B \mapsto \int_{\mathbb{R}^+} f d\nu_{\frac{1}{\sqrt{d}}B \circ X - zI}$$

is convex and 1-Lipschitz on $\mathcal{M}_n(\mathbb{C})$ (in Frobenius norm).

Applying Talagrand's isoperimetric inequality:

$$\mathbb{P}\left(|F(B) - \mathbb{E}\,F(B)| \geq \varepsilon\right) = O(e^{-c_\varepsilon \, nd}).$$

Extend to general f by an approximation argument.

• This argument applies for A drawn uniformly from any set $S \subset \mathcal{M}_n(\{0,1\})$ satisfying $\mathbb{P}(B \in S) \ge \exp(-o(nd))$.

Step 2: smallest singular value

• Consider a random $n \times n$ matrix of the form

$$M = A \circ X + B$$

with: X i.i.d., A fixed 0/1 matrix, B fixed.

• We control the lower tail of $s_n(M)$ under a quasirandomness hypothesis on A ("super-regularity", c.f. Szemerédi's regularity lemma).

Theorem (C. '15)

Assume A satisfies [quasirandomness hypothesis], $||B|| = O(\sqrt{n})$, and $|x_{ij}| = O(1)$ for all $i, j \in [n]$. Then for all t > 0,

$$\mathbb{P}\left(s_n(M) \leq t n^{-1/2}\right) \lesssim t + n^{-1/2}.$$

- Similar result by Rudelson–Zeitouni for the case that x_{ij} are Gaussian, under a weaker expansion-type assumption on A.
- From (C. '14): the r.r.d. matrix A is super-regular w.h.p.

Extension to sparse, unsigned r.r.d. matrix?

- We can extend the argument for Step 1 (convergence of singular value distributions) to the r.r.d. matrix A with $d = n^{\varepsilon}$.
- The main difficulty is to obtain control of the least singular value.
- In this direction we have the following:

Theorem (C. '14)

There are absolute constants C, c > 0 such that the following holds. If $C \log^2 n \le d \le \frac{n}{2}$, then

$$\mathbb{P}(s_n(A)=0)=O(d^{-c}).$$

(We can take c = .05.)

Conjecture

There are constants C, c > 0 such that for any $d \in [3, n-3]$,

$$\mathbb{P}(s_n(A)=0) \leq Cn^{-c}$$
.

- Proofs of upper bounds on $s_1(M) = ||M||_{op}$ reduce to an application of *concentration of measure*.
- Proofs of lower bounds on $s_n(M) = ||M^{-1}||_{op}^{-1}$ reduce to the application of anti-concentration or "small ball" estimates.

Theorem (Anti-concentration for random walks, Erdős '40s)

Let ξ_1, \ldots, ξ_n be i.i.d. uniform Bernoulli signs, and $x \in \mathbb{R}^n$. Then for any $a \in \mathbb{R}$,

$$\mathbb{P}\left(\sum_{i=1}^n \xi_j x_j = a\right) \lesssim \left|\left\{j : x_j \neq 0\right\}\right|^{-1/2}.$$

- More sophisticated bounds have been developed by Tao–Vu and Rudelson–Vershynin using *Inverse Littlewood-Offord theory*.
- This is our hammer where is the nail?

Local symmetries: switchings (after McKay)

In a regular digraph, we can change between

at vertices i_1, i_2, j_1, j_2 and preserve d-regularity.

• In the adjacency matrix, this corresponds to switching between

$$\mathbf{I}_2 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mathbf{J}_2 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{1}$$

at the $(i_1, i_2) \times (j_1, j_2)$ minor.

 Idea: apply several independent switchings, encode outcomes with i.i.d. signs ξ_i .

Where is the nail?

Conditional on R_3, \ldots, R_n , the only randomness is in the choice of sets Ex(1,2), Ex(2,1).

Let $\pi: Ex(1,2) \to Ex(2,1)$ uniform random bijection.

Conditional on π , independently resample the 2 \times 2 minors $M_{(1,2)\times(j,\pi(j))}$.

Where is the nail?

Conditional on R_3, \ldots, R_n , the only randomness is in the choice of sets Ex(1,2), Ex(2,1).

Let $\pi: Ex(1,2) \to Ex(2,1)$ uniform random bijection.

Conditional on π , independently resample the 2 \times 2 minors $M_{(1,2)\times(j,\pi(j))}$.

Where is the nail?

In the randomness of the resampling, $R_1 \cdot u$ is a random walk with steps $u_j - u_{\pi(j)}$. (Found the nail!)

Key technical proposition: normal vectors *u* have *small level sets*.

Combining this with the randomness of π guarantees most steps are non-zero.

What if Ex(1,2) is small?

Concentration and expansion properties

- Problem: what if vertices 1, 2 have large codegree?
 - Solution: use the method of exchangeable pairs for concentration of measure (Chatterjee '06) with a "reflection" coupling to show codegrees concentrate around d²/n.
- Also obtain control on edge densities:

For
$$S, T \subset [n]$$
 and $\varepsilon \geq 0$,

$$\mathbb{P}\left(\left|\frac{e(S,T)}{\frac{d}{n}|S||T|}-1\right|\geq\varepsilon\right)\leq2\exp\left(-\frac{c\varepsilon^2}{1+\varepsilon}\frac{d}{n}|S||T|\right).$$

- In recent work with Larry Goldstein and Toby Johnson, we obtain exponential tail bounds for more general statistics using size biased couplings.
- Allowed us to extend a bound $\lambda_2(A) = O(\sqrt{d})$ on the second eigenvalue of a random regular (undirected) graph to allow $d = O(n^{2/3})$ (previous results were limited to $d = o(n^{1/2})$).

Summary of toy problem

To show

$$\mathbb{P}\left(R_1\in \mathsf{span}(R_3,\ldots,R_n)\right)=o(1)$$

we defined a coupling $(M,\widetilde{M},\pi,\xi)$ on an enlarged probability space, with $M\stackrel{d}{=}\widetilde{M}$, and sought to show

$$\mathbb{P}\left(\widetilde{R}_1\in \operatorname{span}(R_3,\ldots,R_n)\,\big|\,M\right)=o(1).$$

- The randomness of M: Ex(1,2) is large with high probability.
- **②** The randomness of π : the random walk $\widetilde{R}_1 \cdot u$ takes many steps with high probability.
- **1** The randomness of $\xi = (\xi_1, \dots, \xi_n)$ (encoding the resampling of 2×2 minors): used with Erdős' anti-concentration bound to finish the proof.