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Background: Limiting ESDs and

Controlling the Pseudospectrum



Structured non-Hermitian random matrices

• We study ESDs µM = 1
n

∑n
j=1 δλj (M) for n × n matrices

M =
1√
n
A� X = (

1√
n
aijξij)

with ξij iid, standardized, and deterministic weights aij ∈ [0, 1].

For this talk take aij ∈ {0, 1}.
• Ex: For A ≡ 1 1T, µM → circular law (almost surely).

• Applications: stability analysis for large dynamical systems (ecology,

neuroscience...). There is interest in allowing A to be structured and

sparse.
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Simulated ESDs for M = ( 1√
n
aijξij)

n = 2000

ξ ∈ {± 1√
2
± i 1√

2
} uniform.

aij = σ( i
n ,

j
n ), with

σ(x , y) = (x + y)21(|x − y | ≤ 0.1)

3



Simulated ESDs for M = ( 1√
n
aijξij)

n = 2001

ξ ∈ {± 1√
2
± i 1√

2
} uniform.

An = (aij) =

 0 1n/3 1n/3

1n/3 0 0

1n/3 0 0

 .
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Log-characteristic polynomials and Hermitization

To show ESDs of M converge weakly (a.s. or in probability) to µ, it’s

enough to show

1

n
log | det(M−z)| =

1

n

n∑
j=1

log |λj(M)−z | →
∫
C

log |λ−z |dµ(λ) a.e. z ∈ C.

(Recover µ by taking Laplacian.)

Left hand side can be re-expressed as

1

2n
log det[(M − z)∗(M − z)] =

∫ ∞
0

log(s)dµ|M−z|(s).

(This is the template for the construction of Brown’s spectral measure

for non-normal elements of a W ∗ probability space.)

We need to be worried about very small singular values of M − z , i.e.

large singular values of the resolvent (M − z)−1.

(ε-)pseudospectrum: Λε(M) = Λ(M) ∪
{
z ∈ C : ‖(M − z)−1‖op ≥ 1/ε

}
5



Structured random matrices have small pseudospectrum

Theorem (C. ’16)

Let M = 1√
n
A� X = ( 1√

n
aijξij) with aij ∈ [0, 1] deterministic, ξij iid,

centered, unit variance and E |ξij |4+ε <∞. There are constants

C (ε, r ,R), c(ε) > 0 such that for any z ∈ C with |z | ∈ [r ,R] ⊂ (0,∞),

P(‖(M − z)−1‖op ≥ nC ) . ε,r ,R n−c

• Earlier works on invertibility make strong pseudorandomness

assumptions on A, don’t use the shift (optimal condition found by

Rudelson–Zeitouni ’13, see also C. ’16).

• Question: Proof gives tower dependence of C on 1/r . Can we do

better?
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Spectral anti-concentration via

the Schwinger–Dyson equations



Controlling other large singular values of (M − z)−1

• To prove uniform integrability of log(s) by µ|M−z|, need more than

just ‖(M − z)−1‖op = nO(1). Would like a spectral

anti-concentration estimate

µ|M−z|([0, η]) . η w .h.p. ∀η ≥ n−c .

• It’s enough to bound

1

η
µMz ([−η, η]) .

1

2n

2n∑
j=1

η

λj(Mz)2 + η2
=

1

2n
Im Tr(Mz−iη)−1 . 1

for all η ≥ n−c , where Mz =

(
0 M − z

M∗ − z̄ 0

)
.
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Schwinger–Dyson equations

• In the mean field setting A = 1 1T, Stieltjes transform satisfies a

(cubic) scalar polynomial equation.

• In non-mean field case, we have Im (Mz − iη)−1 ≈ diag(u, v),

where u, v : [n]→ R+ solve the cubic polynomial system

− 1

u
= η + Sv − |z |2

η + STu

− 1

v
= η + Su − |z |2

η + STv

and S(i , j) = 1
na

2
ij .

Theorem (C., Hachem, Najim, Renfrew ’16)

Assume A = (aij) is robustly irreducible. Then for any fixed z 6= 0,

‖u‖∞, ‖v‖∞ . |z| 1

uniformly for η > 0.
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Boundedness of solutions to the S–D equations

Idea: (Recall aij ∈ {0, 1}.) View A as the adjacency matrix of a digraph.

Up to constants, the S–D equations give the local constraints

u(j) � min

{
〈u〉Nin(j),

1

〈v〉Nout(j)

}
, v(j) � min

{
〈v〉Nout(j),

1

〈u〉Nin(j)

}
.

We also have a global trace identity∑
j∈[n]

u(j) =
∑
j∈[n]

v(j).

1. Assume u(j0) is large for some j0 ∈ [n].

2. Use the robust irreducibility assumption and the local constraints to

“propagate” this property to almost all other indices j .

3. On the other hand, we have u(j)v(j). 1 for all j , so we conclude

v(j) is small for almost all indices j . But this contradicts the trace

identity.
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Spectral anti-concentration:

geometric approach



Bounding the density of states

Consider random symmetric matrices of the form W = A� X = (aijξij)

where {ξij}1≤i≤j≤n are independent, standardized, sub-Gaussian

variables, aij ∈ {0, 1} are deterministic weights.

For an interval I ⊂ R, when can we show

µ 1√
n
W (I) . |I| w .h.p.?

Theorem (Local semicircle law, Erdős–Schlein–Yau ’08) Let A = 1 1T.

Then with high probability, for any interval I ⊂ R with |I| ≥ n−1+ε,

|µH(I)− µsc(I)| = o(|I|).

Recent extensions to non-mean field models satisfying some technical

hypotheses by Erdös et al., using careful analysis of associated

Schwinger–Dyson equations (a.k.a. the quadratic vector equations).
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Spectral anti-concentration under expanding support

Write N (i) = {j ∈ [n] : aij = 1}, and define the δ-dense boundary of a

set J ⊂ [n] as

Dδ(J) = {i ∈ Jc : |N (i) ∩ J| ≥ δ|J|}.

Say that A is a (δ, ε)-expander if

|N (i)| ≥ δn ∀i ∈ [n] and |Dδ(J)| ≥ min(ε|J|, |Jc |) ∀J ⊂ [n].

Theorem (C. ’18)

Let A be a (δ, ε)-expander for some δ, ε ∈ (0, 1). Fix τ > 0. With high

probability, for any I ⊂ R \ (−τ, τ) with |I| ≥ Cn−1 log n, we have

µ 1√
n
W (I) . |I|.

*Note the assumptions on A permit an atom at 0.

*Could reach intervals of length n−1√log n using recent ideas of Nguyen ’17. 11



Spectral anti-concentration: ideas of the proof

Fix I ⊂ R away from 0 of length η. We want to bound the spectral

concentration event

Conc(W , n0) = {W has ≥ n0 eigenvalues in
√
nI}.

Idea: can use interlacing and weak delocalization of eigenvectors to

reduce to bounding the probability that

smin(ΠWJc ,J) ≤ Cηn/
√
m.

where J is a random set of size m� n0 and Π is a spectral projectionf or

WJc of rank ≥ n0 −m.

Key: Π and WJc ,J are independent. We’ve reduced to invertibility of an

(n0 −m)×m (tall) projection ΠWJc ,J of a (very tall) submatrix WJc ,J .

Main technical step: show no-gaps delocalization holds for the

eigenvectors of WJc .
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