Pseudospectrum and spectral anti-concentration: beyond mean field models

Lake Arrowhead, June 21, 2018

Nick Cook, UCLA

Partly based on joint work with Walid Hachem, Jamal Najim and David Renfrew

Outline of the talk

- 1. Background: Limiting ESDs and Controlling the Pseudospectrum
- 2. Spectral anti-concentration via the Schwinger-Dyson equations
- 3. Spectral anti-concentration: geometric approach

Background: Limiting ESDs and

Controlling the Pseudospectrum

Structured non-Hermitian random matrices

• We study ESDs $\mu_M = \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_j(M)}$ for $n \times n$ matrices

$$M = \frac{1}{\sqrt{n}} A \odot X = \left(\frac{1}{\sqrt{n}} a_{ij} \xi_{ij}\right)$$

with ξ_{ij} iid, standardized, and deterministic weights $a_{ij} \in [0, 1]$. For this talk take $a_{ij} \in \{0, 1\}$.

- Ex: For $A \equiv \mathbf{1} \mathbf{1}^{\mathsf{T}}$, $\mu_M \to \text{circular law (almost surely)}$.
- Applications: stability analysis for large dynamical systems (ecology, neuroscience...). There is interest in allowing A to be structured and sparse.

Simulated ESDs for $M = (\frac{1}{\sqrt{n}} a_{ij} \xi_{ij})$

$$n=2000$$
 $\xi\in\{\pm\frac{1}{\sqrt{2}}\pm i\frac{1}{\sqrt{2}}\}$ uniform. $a_{ij}=\sigma(\frac{i}{n},\frac{j}{n}),$ with $\sigma(x,y)=(x+y)^21(|x-y|\leq 0.1)$

Simulated ESDs for $M = (\frac{1}{\sqrt{n}} a_{ij} \xi_{ij})$

$$n = 2001$$

$$\xi \in \{\pm \frac{1}{\sqrt{2}} \pm i \frac{1}{\sqrt{2}}\}$$
 uniform.

$$A_n = (a_{ij}) = \begin{pmatrix} 0 & \mathbf{1}_{n/3} & \mathbf{1}_{n/3} \\ \mathbf{1}_{n/3} & 0 & 0 \\ \mathbf{1}_{n/3} & 0 & 0 \end{pmatrix}.$$

Log-characteristic polynomials and Hermitization

To show ESDs of M converge weakly (a.s. or in probability) to μ , it's enough to show

$$\frac{1}{n}\log|\det(M-z)| = \frac{1}{n}\sum_{j=1}^{n}\log|\lambda_{j}(M)-z| \to \int_{\mathbb{C}}\log|\lambda-z|d\mu(\lambda) \quad a.e. \ z \in \mathbb{C}.$$

(Recover μ by taking Laplacian.)

Left hand side can be re-expressed as

$$\frac{1}{2n}\log\det[(M-z)^*(M-z)] = \int_0^\infty \log(s)d\mu_{|M-z|}(s).$$

(This is the template for the construction of Brown's spectral measure for non-normal elements of a W^* probability space.)

We need to be worried about very small singular values of M-z, i.e. large singular values of the resolvent $(M-z)^{-1}$.

$$(\varepsilon ext{--})$$
 pseudospectrum: $\Lambda_{arepsilon}(M) = \Lambda(M) \cup \left\{z \in \mathbb{C} : \|(M-z)^{-1}\|_{op} \geq 1/arepsilon
ight\}$

Structured random matrices have small pseudospectrum

Theorem (C. '16)

Let $M=\frac{1}{\sqrt{n}}A\odot X=(\frac{1}{\sqrt{n}}a_{ij}\xi_{ij})$ with $a_{ij}\in[0,1]$ deterministic, ξ_{ij} iid, centered, unit variance and $\mathbb{E}\,|\xi_{ij}|^{4+\varepsilon}<\infty$. There are constants $C(\varepsilon,r,R),c(\varepsilon)>0$ such that for any $z\in\mathbb{C}$ with $|z|\in[r,R]\subset(0,\infty)$,

$$\mathbb{P}(\|(M-z)^{-1}\|_{op} \geq n^C) \lesssim_{\varepsilon,r,R} n^{-c}$$

- Earlier works on invertibility make strong pseudorandomness assumptions on A, don't use the shift (optimal condition found by Rudelson–Zeitouni '13, see also C. '16).
- Question: Proof gives tower dependence of C on 1/r. Can we do better?

Spectral anti-concentration via

the Schwinger-Dyson equations

Controlling other large singular values of $(M-z)^{-1}$

• To prove uniform integrability of $\log(s)$ by $\mu_{|M-z|}$, need more than just $\|(M-z)^{-1}\|_{op} = n^{O(1)}$. Would like a *spectral anti-concentration* estimate

$$\mu_{|M-z|}([0,\eta]) \lesssim \eta$$
 w.h.p. $\forall \eta \geq n^{-c}$.

• It's enough to bound

$$\frac{1}{\eta}\mu_{\boldsymbol{M}_{z}}([-\eta,\eta]) \lesssim \frac{1}{2n} \sum_{j=1}^{2n} \frac{\eta}{\lambda_{j}(\boldsymbol{M}_{z})^{2} + \eta^{2}} = \frac{1}{2n} \operatorname{Im} \operatorname{Tr}(\boldsymbol{M}_{z} - i\eta)^{-1} \lesssim 1$$

for all
$$\eta \geq n^{-c}$$
, where $\boldsymbol{M}_z = \begin{pmatrix} 0 & M-z \\ M^* - \bar{z} & 0 \end{pmatrix}$.

7

Schwinger-Dyson equations

- In the mean field setting $A = \mathbf{1} \mathbf{1}^{\mathsf{T}}$, Stieltjes transform satisfies a (cubic) scalar polynomial equation.
- In non-mean field case, we have $\operatorname{Im}(\boldsymbol{M}_z i\eta)^{-1} \approx \operatorname{diag}(\boldsymbol{u}, \boldsymbol{v})$, where $\boldsymbol{u}, \boldsymbol{v} : [n] \to \mathbb{R}_+$ solve the cubic polynomial system

$$-\frac{1}{\mathbf{u}} = \eta + S\mathbf{v} - \frac{|z|^2}{\eta + S^{\mathsf{T}}\mathbf{u}}$$
$$-\frac{1}{\mathbf{v}} = \eta + S\mathbf{u} - \frac{|z|^2}{\eta + S^{\mathsf{T}}\mathbf{v}}$$

and $S(i,j) = \frac{1}{n}a_{ij}^2$.

Theorem (C., Hachem, Najim, Renfrew '16)

Assume $A=(a_{ij})$ is robustly irreducible. Then for any fixed $z\neq 0$,

$$\|\textbf{\textit{u}}\|_{\infty}, \|\textbf{\textit{v}}\|_{\infty} \lesssim_{|\textbf{\textit{z}}|} 1$$

uniformly for $\eta > 0$.

Boundedness of solutions to the S-D equations

Idea: (Recall $a_{ij} \in \{0,1\}$.) View A as the adjacency matrix of a digraph. Up to constants, the S–D equations give the local constraints

$$\textbf{\textit{u}}(j) \asymp \min\bigg\{\langle \textbf{\textit{u}}\rangle_{\mathcal{N}_{in}(j)}, \ \frac{1}{\langle \textbf{\textit{v}}\rangle_{\mathcal{N}_{out}(j)}}\bigg\}, \qquad \textbf{\textit{v}}(j) \ \ \asymp \min\bigg\{\langle \textbf{\textit{v}}\rangle_{\mathcal{N}_{out}(j)}, \frac{1}{\langle \textbf{\textit{u}}\rangle_{\mathcal{N}_{in}(j)}}\bigg\}.$$

We also have a global trace identity

$$\sum_{j\in[n]} \boldsymbol{u}(j) = \sum_{j\in[n]} \boldsymbol{v}(j).$$

- 1. Assume $u(j_0)$ is large for some $j_0 \in [n]$.
- 2. Use the robust irreducibility assumption and the local constraints to "propagate" this property to almost all other indices *j*.
- 3. On the other hand, we have $u(j)v(j)\lesssim 1$ for all j, so we conclude v(j) is small for almost all indices j. But this contradicts the trace identity.

geometric approach

Spectral anti-concentration:

Bounding the density of states

Consider random symmetric matrices of the form $W = A \odot X = (a_{ij}\xi_{ij})$ where $\{\xi_{ij}\}_{1 \leq i \leq j \leq n}$ are independent, standardized, sub-Gaussian variables, $a_{ij} \in \{0,1\}$ are deterministic weights.

For an interval $\mathcal{I} \subset \mathbb{R}$, when can we show

$$\mu_{\frac{1}{\sqrt{n}}W}(\mathcal{I}) \lesssim |\mathcal{I}|$$
 w.h.p.?

Theorem (Local semicircle law, Erdős–Schlein–Yau '08) Let $A = \mathbf{1} \mathbf{1}^{\mathsf{T}}$. Then with high probability, for any interval $\mathcal{I} \subset \mathbb{R}$ with $|\mathcal{I}| \geq n^{-1+\varepsilon}$,

$$|\mu_{H}(\mathcal{I}) - \mu_{sc}(\mathcal{I})| = o(|\mathcal{I}|).$$

Recent extensions to non-mean field models satisfying some technical hypotheses by Erdös et al., using careful analysis of associated Schwinger–Dyson equations (a.k.a. the quadratic vector equations).

Spectral anti-concentration under expanding support

Write $\mathcal{N}(i) = \{j \in [n] : a_{ij} = 1\}$, and define the δ -dense boundary of a set $J \subset [n]$ as

$$\mathcal{D}_{\delta}(J) = \{i \in J^{c} : |\mathcal{N}(i) \cap J| \ge \delta|J|\}.$$

Say that A is a (δ, ε) -expander if

$$|\mathcal{N}(i)| \geq \delta n \quad \forall i \in [n] \quad \text{ and } \quad |\mathcal{D}_{\delta}(J)| \geq \min(\varepsilon |J|, |J^c|) \quad \forall J \subset [n].$$

Theorem (C. '18)

Let A be a (δ, ε) -expander for some $\delta, \varepsilon \in (0,1)$. Fix $\tau > 0$. With high probability, for any $\mathcal{I} \subset \mathbb{R} \setminus (-\tau, \tau)$ with $|\mathcal{I}| \geq Cn^{-1} \log n$, we have

$$\mu_{\frac{1}{\sqrt{n}}W}(\mathcal{I}) \lesssim |\mathcal{I}|.$$

^{*}Note the assumptions on A permit an atom at 0.

^{*}Could reach intervals of length $n^{-1}\sqrt{\log n}$ using recent ideas of Nguyen '17.

Spectral anti-concentration: ideas of the proof

Fix $\mathcal{I} \subset \mathbb{R}$ away from 0 of length η . We want to bound the spectral concentration event

$$Conc(W, n_0) = \{W \text{ has } \geq n_0 \text{ eigenvalues in } \sqrt{n}\mathcal{I}\}.$$

Idea: can use interlacing and weak delocalization of eigenvectors to reduce to bounding the probability that

$$s_{\min}(\Pi W_{J^c,J}) \leq C \eta n / \sqrt{m}.$$

where J is a random set of size $m \ll n_0$ and Π is a spectral projection or W_{J^c} of rank $\geq n_0 - m$.

Key: Π and $W_{J^c,J}$ are independent. We've reduced to invertibility of an $(n_0-m)\times m$ (tall) projection $\Pi W_{J^c,J}$ of a (very tall) submatrix $W_{J^c,J}$.

Main technical step: show no-gaps delocalization holds for the eigenvectors of W_{J^c} .