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Outline

1. Geometric approach to RMT: successes and limitations

2. Spectral anti-concentration for structured Hermitian random matrices

3. Pseudospectra of i-non-id matrices

4. Pseudospectra and convergence to Brown measure for quadratic

polynomials in Ginibre matrices (linearization  pseudospectra for

patterned block random matrices).
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Geometric approach to RMT

Family of techniques originating from the local theory of Banach spaces

(Grothendieck, Dvoretzky, Lindenstrauss, Milman, Schechtman . . . ).

Modern reference: Vershynin’s text High dimensional probability.

Can often get quantitative bounds at finite N that are within a constant factor

of the asymptotic truth, with arguments that are more flexible.

E.g. can show ‖X‖op = O(
√
N) w.h.p. for X an iid matrix with sub-Gaussian

entries with a simple net argument and concentration. Compare ∼ 2
√
N by the

trace method.

∗ (For X GinOE can even get the right constant E ‖X‖op ≤ 2
√
N using

Slepian’s inequality!)

Net arguments and anti-concentration have been key for controlling the

invertibility / condition number / pseudospectrum of random matrices.
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Spectral anti-concentration

Consider H an N × N Hermitian random matrix with {Hij}i≤j independent,

centered, sub-Gaussian with variances σ2
ij ∈ [0, 1].

Denote by Σ = (σij)
N
i,j=1 the standard deviation profile.

How many eigenvalues can lie in an interval I ⊂ R? Under what conditions on

Σ can we show

µ 1√
N
H(I) . |I| ∀I ⊂ R, |I| ≥ N−1+ε

with high probability (w.h.p.)?

Local semicircle law (Erdős–Schlein–Yau ’08)

Suppose σij ≡ 1. With high probability, for any interval I ⊂ R with

|I| ≥ N−1+ε,

|µ 1√
N
H(I)− µsc(I)| = o(|I|).

Extended to non-constant variance by Ajanki, Erdős & Krüger through careful

analysis of associated vector Dyson equations.
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Spectral anti-concentration

With spt(Σ) = {(i , j) ∈ [N]2 : σij ≥ σ0} (some fixed cutoff σ0 > 0) say Σ is

• δ-broadly connected if ∀I , J ⊂ [N] with |I |+ |J| ≥ N,

| spt(Σ) ∩ (I × J)| ≥ δ|I ||J| (Rudelson–Zeitouni ’13);

• δ-robustly irreducible if ∀J ⊂ [N], | spt(Σ) ∩ (J × Jc)| ≥ δ|J||Jc |.

Robust irreducibility permits µ 1√
N
H to have an atom at zero.

Theorem (C. ’17, unpublished)

1. Fix δ > 0 and suppose Σ is δ-broadly connected. Then w.h.p., for any

I ⊂ R with |I| ≥ C log N
N

we have µ 1√
N
H(I) .δ |I|.

2. Fix δ, κ > 0 and suppose Σ is δ-robustly irreducible. Then w.h.p., for any

I ⊂ R \ (−κ, κ) with |I| ≥ C log N
N

we have µ 1√
N
H(I) .δ,κ |I|.

Related result of C.–Hachem–Najim–Renfrew ’16 for deterministic equivalents.

Can reach intervals of length N−1√logN using Bourgain–Tzafriri’s restricted

invertibility theorem as in independent work of Nguyen for case σij ≡ 1.

Same strategy can be applied to e.g. H1H2 + H2H1 (local law by Anderson ’15).

Cf. Banna–Mai ’18 on Hölder-regularity for distribution of NC-polynomials.
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Pseudospectrum

(Already came up in talks of Capitaine, Fyodorov, Zeitouni and Vogel.)

For A ∈ MN(C), λ ∈ Λ(A) is a qualitative statement.

More useful: For ε > 0 the ε-pseudospectrum is the set

Λε(A) = Λ(A) ∪ {z ∈ C : ‖(A− z)−1‖op ≥ 1/ε}

= {z ∈ C : ∃E with ‖E‖op ≤ ε and z ∈ Λ(A + E)}.

For A normal (A∗A = AA∗), Λε(A) = Λ(A) + εD.

(We always have Λε(A) ⊇ Λ(A) + εD.)

In particular, the spectrum of normal operators is stable: the spectrum is in a

sense a 1-Lipschitz function of the matrix.

This can be extremely untrue for non-normal matrices!
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The standard example: Left shift operator on CN

TN =


0 1 0 · · · 0

0 0 1 · · · 0

· · ·

0 · · · 1

0 · · · 0

 ∗−→ Haar unitary element u ∈ (A, τ).

ESDs ≡ δ0 , Λε(TN)→ D for ε = e−o(N) , Brown measure = Unif(∂D).

Eigenvalues of TN + N−10XN , with XN GinOE. (Figure by Phil Wood.)
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Pseudospectra of random matrices

Pseudospectrum of a random non-normal matrix is not so large.

For iid matrix X with sub-Gaussian entries,

P
{
z ∈ Λε

( 1√
N
X
)}

= P
{∥∥∥( 1√

N
X − z

)−1∥∥∥
op
≥ 1/ε

}
. Nε+ e−cN

for any fixed z ∈ C (≈ Rudelson–Vershynin ’07).

In particular E Leb(Λε( 1√
X

)) . Nε+ e−cN .

Improves to N2ε2 for complex entries with independent real and imaginary

parts [Luh ’17] or real matrices with dist(z ,R)& 1 [Ge ’17].

Compare deterministic bound Leb(Λε(A)) ≤ πNε2 for normal matrices.

Pseudospectrum related to eigenvalue condition numbers (talk of Fyodorov):

Leb(Λε(M) ∩ Ω) ∼ πε2
∑

j :λj∈Ω

κj(M)2 as ε→ 0.
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Pseudospectra of structured random matrices

Applications to complex dynamical systems motivate understanding spectra

and pseudospectra of sparse random matrices with non-iid entries (recall talk of

David Renfrew).

Theorem (C. ’16)

Let X have independent, centered entries of arbitrary variances σ2
ij ∈ [0, 1],

4 + ε moments. For any z 6= 0,∥∥∥( 1√
N
X − z

)−1∥∥∥
op
≤ NC(|z|,ε) with probability 1− O(N−c(ε)).

∗ C(|z |, ε) = twr(exp(1/|z |O(1))) . . . Please improve!

∗ Conjecture: same holds with z replaced by any M with smin(M) & 1.

∗ Assuming entries of bounded density, can improve probability bound to

1− O(N−K ) for arbitrary K > 0. Main difficulty is to allow σij = 0.

This is a key ingredient for proof of the inhomogeneous circular law

[C.–Hachem–Najim–Renfrew ’16].

(Easier argument suffices for local law of [Alt–Erdős–Krüger ’16] since they

assume σij & 1 and bounded density. Cf. survey of Bordenave & Chafai ’11.) 8



Pseudospectrum for quadratic polynomials in Ginibre matrices

Now let X denote a (complex) N × N Ginibre matrix having iid entries

Xij ∼ NC(0, 1/N).

Theorem (C.–Guionnet–Husson ’19)

Let m ≥ 1 and let p be a quadratic polynomial in non-commutative variables

x1, . . . , xm. Let N ≥ 2 and X1, . . . ,Xm be iid N × N Ginibre matrices. Set

P = p(X1, . . . ,Xm). For any z ∈ C and any ε > 0,

P{z ∈ Λε(P)} = P
{
‖(P − z)−1‖op ≥

1

ε

}
≤ NCεc + e−cN

for constants C , c > 0 depending only on p.
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Motivation: convergence of ESDs

• Proofs of limits for the ESDs µX := 1
N

∑N
j=1 δλj (X ) of non-normal random

matrices X = XN hinge upon control of the pseudospectrum.

In particular, the problem of the pseudospectrum is the reason non-Hermitian

RMT has lagged behind the theory for Wigner matrices.

∗ A key idea: Hermitization

• Hermitian polynomials – some highlights:

• Haagerup–Thorbjørnsen ’05: No outliers (recent alternative proof by

Collins–Guionnet–Parraud). Extensions by many authors.

• Anderson ’15: local law for the anti-commutator H1H2 + H2H1 of

independent Wigner matrices.

• Erdős–Krüger–Nemish ’18: local law for polynomials satisfying a technical

condition (includes homogeneous quadratic polynomials and symmetrized

monomials in iid matrices X1X2 · · ·XmX
∗
m · · ·X2X1).

• Products of independent iid matrices: limiting ESDs (Götze–Tikhomirov and

O’Rourke–Soshnikov ’10). No outliers and local law (Nemish ’16, ’17).

∗ A key idea: Linearization
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Hermitization

• One can encode the ESD of a non-normal M ∈ MN(C) in a family of ESDs of

Hermitian matrices |M − z | =
√

(M − z)∗(M − z) as follows:

µM =
1

N

N∑
j=1

δλj (M) =
1

2π
∆z

∫ ∞
0

log(s)µ|M−z|(ds).

• So it seems we can recover limit of µXN if we know the limits of ESDs of the

family of Hermitian matrices {|XN − z |}z∈C.

• But not quite! Possible escape of mass to zero: Pseudospectrum

• Bai ’97 controlled the pseudospectrum of iid matrices (under some technical

assumptions) and obtained the Circular Law.

Assumptions relaxed in works of Götze–Tikhomirov ’07, Pan–Zhou ’07, Tao–Vu

’07, ’08.
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Brown measure

• Free probability gives tools to calculate limiting ESDs for polynomials in

independent random matrices, at least if they’re normal (e.g. XY + YX for

X ,Y iid Wigner).

• For a normal element a of a non-commutative probability space (A, τ), the

spectral theorem provides us with a spectral measure µa determined by the

∗-moments τ(ak(a∗)l).

• For general (non-normal) elements a, can define the Brown measure:

νa :=
1

2π
∆z

∫ ∞
0

log(s)µ|a−z|(ds)

which is determined by the ∗-moments (|a− z | is self-adjoint).

• If AN converge in ∗-moments to a, it doesn’t follow that µAN converge weakly

to νa (Brown measure isn’t continuous in this topology).

• Question: If AN are non-normal random matrices, do the ESDs converge to the

Brown measure? (Answer is yes for single iid matrix XN .)
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Convergence to the Brown measure for polynomials

Theorem (C.–Guionnet–Husson ’19)

Let m ≥ 1 and let p be a quadratic polynomial in non-commutative variables

x1, . . . , xm. For each N let X
(N)
1 , . . . ,X

(N)
m be iid N × N Ginibre matrices. Set

P(N) = p(X
(N)
1 , . . . ,X

(N)
m ). Almost surely,

µP(N) → νp weakly,

where νp is the Brown measure for p(c1, . . . , cm) with c1, . . . , cm free circular

elements of a non-commutative probability space.

Partially answers a question raised in talk of Mireille Capitaine.

νp can be recovered from solution of an associated (matrix-valued)

Schwinger–Dyson equation.

Hard to solve by hand! Numerics: νp has a “volcano” shape.
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Simulation: XY + YX

N = 5000, entries Uniform ∈ [−1, 1].
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Pseudospectrum of XY + YX , Step 1: Linearization

• We’ll illustrate ideas for the anti-commutator P = XY + YX of independent

Ginibre matrices.

• To control the pseudospectrum of P we need to bound ‖(P − z)−1‖op. Entries

of P are highly correlated with complicated distribution, so previous approaches

(Tao–Vu, Rudelson–Vershynin) don’t apply.

• From the Schur complement formula, (P − z)−1 is the top left block of L−1,

where L is the 3N × 3N linearized matrix

L =


−z X Y

Y −I 0

X 0 −I

 .

• So we’ve reduced to bounding ‖L−1‖op, where we can view L as an N × N

matrix with independent entries Lij ∈ M3(C).
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Pseudospectrum of XY + YX , Step 2: dimension reduction

• L is poorly-invertible (ill-conditioned) if one of its columns is close to the span

of the remaining columns.

• Reduction to bounded dimension: Let L̂j denote the projection of the jth

column Lj = (Lij)
N
i=1 ∈ M3(C)N to the span of the remaining 3N − 3 columns.

Can reduce our task to showing

P{‖(L̂1)−1‖op ≥ 1/ε} ≤ NCεc + e−cN .

• Reduction to scalar anti-concentration: We want to show L̂1 is well

invertible. Giving up some powers of N, it’s enough to show

P{| det(L̂1)| ≤ ε} ≤ NC ′εc + e−cN .

After conditioning on columns {Lj}Nj=2, det(L̂1) is a bounded-degree polynomial

in the 2N independent Gaussian entries of L1.
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Pseudospectrum of XY + YX , Step 3: anticoncentration

• Off-the-shelf anti-concentration (Carbery–Wright inequality): If f is a degree-d

polynomial in iid Gaussian variables g = (g1, . . . , gn), then

sup
t∈R

P
{
|f (g)− t| ≤ ε

√
Var f (g)

}
.d ε

1/d .

So it’s enough to show

Var
(

det(L̂1) | {Lj}Nj=2

)
≥ N−O(1) (1)

with high probability.

• Express L̂1 = U∗L1 =
∑N

i=1 U
∗
i Li1 where U = (u1, u2, u3) orthonormal in the

orthocomplement of Span({Lj}Nj=2).

Expanding in the Gaussian variables Xi1,Yi1 and inspecting coefficients of

highest degree (degree 3 in this case), one sees we get (1) unless U has a lot of

geometric structure in its rows.

• Set of orthonormal bases with such structure has low metric entropy, so we can

rule out such U using a net argument.
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Further directions

• Higher degree polynomials, including deterministic matrices (as in

Capitaine’s talk)?

• General entry distributions?

• ∗-polynomials? (Includes polynomials in GUE matrices 1√
2
(X + X ∗).)

• Rational functions?
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Thank you!
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