Large deviations and the regularity method for the Erdős-Rényi (hyper)graph

One World Probability Seminar, 2021/06/17

Nicholas Cook, Duke University
Based on joint work with Amir Dembo and Huy Tuan Pham

Extremal vs typical behavior

Many problems in combinatorics are of the form:
For two functions $f, g: \mathcal{G} \rightarrow \mathbb{R}$ on a finite set \mathcal{G}, understand the behavior of f under a constraint on g.

Example: Counting subgraphs. $\mathcal{G}=\mathcal{G}_{n}$ is the set of simple graphs over $[n]$,

$$
f(G)=\operatorname{hom}\left(K_{3}, G\right), \quad g(G)=\operatorname{hom}\left(K_{2}, G\right)
$$

where $\operatorname{hom}(H, G)=\#\{\phi: V(H) \rightarrow[n]: \phi(e) \in E(G) \quad \forall e \in E(H)\}$.
Extremal problem: Maximize f subject to $g \leq L$.
Kruskal-Katona Theorem $\Rightarrow \operatorname{hom}\left(K_{3}, G\right) \leq L^{3 / 2}$. (Saturated by $G=K_{\sqrt{L}}$.) Extensions to general (hyper)graph embeddings by Alon, Friedgut-Kahn. Also a consequence of Finner's generalized Hölder inequality.

Typical behavior: Typical size of $f(\boldsymbol{G})$ for random $\boldsymbol{G} \in \mathcal{G}$ with $g(\boldsymbol{G})=L$ (microcanonical ensemble) or $\mathbb{E} g(\boldsymbol{G}) \sim L$ (grand canonical ensemble). $\boldsymbol{G}=\boldsymbol{G}(n, p): \mathbb{E} \operatorname{hom}\left(K_{2}, \boldsymbol{G}\right) \sim n^{2} p, \mathbb{E} \operatorname{hom}\left(K_{3}, \boldsymbol{G}\right) \sim n^{3} p^{3} \sim L^{3 / 2} p^{3 / 2}$. LLN and CLT (Ruciński '88)

Extremal vs typical vs large deviation regimes

Between the extremal and typical regimes there are large deviation regimes.
Tail problem: For $q \in(p, 1)$, estimate
$\mathbb{P}\left(\operatorname{hom}\left(K_{3}, \boldsymbol{G}(n, p)\right) \sim n^{3} q^{3}\right)$.
Conditional structure problem: Typical structure of \boldsymbol{G} on the (atypical) large deviation event? Related to stability of optimizers for the extremal problem (cf. recent works of Keevash on Kruskal-Katona, Ellis et al. on Loomis-Whitney).

There's also the lower tail. Extremal problem: Razborov's theorem. Large deviations: Chatterjee-Varadhan '11, Zhao '15, Kozma-Samotij '21.

Large deviations problem inherits some structure of the extremal problem, but there are also new phenomena (and in the hypergraph setting the picture is even more rich, still poorly understood).

In this talk: I'll motivate a general study of the high-dimensional geometry of the space of graphs $\mathcal{G}_{n} \subset \mathbb{R}^{\binom{n}{2}}$, in as seen under various norms (old and new).

Large deviation principles (LDPs)

In the general setting of a topological measurable space \mathcal{X}, an LDP provides a description of the large scale landscape of \mathcal{X} with respect to a sequence of probability measures μ_{n}.

Informally it says that for large n,

$$
\mu_{n}(\mathcal{E}) \approx \exp \left(-R_{n} \inf \{J(x): x \in \mathcal{E}\}\right)
$$

for arbitrary \mathcal{E} in the topology, where R_{n} is the speed and $J: \mathcal{X} \rightarrow \mathbb{R}_{+}$is the rate function.

Applying to level sets, yields results for joint tail events for continuous functionals, e.g. of the form

$$
\mu_{n}\left(\left\{f_{1}>L_{1}, f_{2}>L_{2}\right\}\right) \approx \exp \left(-R_{n} \inf \left\{J(x): f_{1}(x)>L_{1}, f_{2}(x)>L_{2}\right\}\right)
$$

Integration by parts gives free energy for Gibbs measures (Varadhan's Lemma).

Large deviation principles (LDPs)

$$
\text { LDP: } \quad \mu_{n}(\mathcal{E}) \approx \exp \left(-R_{n} \cdot \inf \{J(x): x \in \mathcal{E}\}\right)
$$

Results for tails $\mathbb{P}(\operatorname{hom}(H, \boldsymbol{G}) \geq L)$ are of this form, with $\mathcal{X}=\mathbb{R}$ and μ_{n} the distribution of hom($H, \boldsymbol{G})$.

However, a more powerful result would be to have an LDP for $\boldsymbol{G}(n, p)$ and deduce tails for functionals $f: \mathcal{G}_{n} \rightarrow \mathbb{R}$, such as embeddings counts.

Problem: This doesn't fit the classical framework: The Erdős-Rényi measures $\mu_{n, p}$ are not a sequence of measures on fixed topological space \mathcal{X}, but rather a growing sequence of spaces \mathcal{G}_{n}.

Solution: The topological space \mathcal{W} of graphons provides a completion for the space of all graphs of all sizes.

Theorem (Chatterjee-Varadhan '11)

For fixed $p \in(0,1)$ the sequence of Erdős-Rényi measures $\mu_{n, p}$ on \mathcal{W} satisfies an LDP with speed n^{2} and a certain rate function.

The regularity method (topological perspective)

Graphon theory provides a topological reformulation of the regularity method from extremal graph theory. In particular we have the following qualitative versions of classic lemmas:

The Regularity Lemma: \mathcal{W} is compact (after quotient by vertex relabelings).
The Counting Lemma: Homomorphism counts extend to continuous (nonlinear) functionals on \mathcal{W}.

The Chatterjee-Varadhan LDP (whose proof hinges on the regularity lemma) combined with the Counting Lemma yields LDPs for homormorphism counts in $\boldsymbol{G}_{n, p}$, reducing the upper tail to an optimization problem for the rate function (analyzed in CV11 and Lubetzky-Zhao '12).

Problem: for $p=o(1)$, graphon space cannot provide an informative LDP.
\star Can't be rectified by rescaling of subgraph statistics and measures $\mu_{n, p}$, due to a localization phenomenon: main contribution to large deviations comes from a vanishing proportion of edges in a dense configuration (recall cliques and hubs).

* These structures can occur at various scales.

Quantitative large deviations for random graphs (C.-Dembo '18)

The CV LDP is really just breaking the space $\mathcal{G}_{n} \cong\{0,1\}\binom{n}{2}$ into neighborhoods of a bounded number of graphons. Reduces to studying the probability $\boldsymbol{G}(n, p)$ lies in a small ball in the cut norm.

This can be made quantitative. Key fact: In a topological vector space, we have the non-asymptotic bound (consequence of minimax theorem)

$$
\mu(\mathcal{K}) \leq \exp \left(-\inf _{x \in \mathcal{K}} J(x)\right)
$$

for convex \mathcal{K}, appropriate J (convex dual of log-MGF $\left.y \mapsto \log \int e^{\langle y, \cdot\rangle} d \mu\right)$.
So we can get quantitative tail estimates for hom (H, \boldsymbol{G}) by efficiently covering $\mathcal{X}_{n}:=[0,1]\left(\begin{array}{l}\binom{n}{2} \\ \text { with convex sets on which hom }(H, \cdot) \text { does not vary much, where }\end{array}\right.$

$$
\operatorname{hom}(H, X)=\sum_{\phi: V(H) \rightarrow[n]} \prod_{e \in E(H)} X_{\phi(e)}
$$

Estimates on covering numbers $=$ quantitative compactness.
Controlling variation of hom (H, \cdot) (under some norm) $=$ quantitative counting lemma.

Quantitative large deviations for random graphs (C.-Dembo 18)

Regard $X \in \mathcal{X}_{n}=[0,1] \begin{gathered}\binom{n}{2}\end{gathered}$ as adjacency matrices for edge-weighted graphs.
Recall the spectral operator norm: $\|M\|_{\ell_{2} \rightarrow \ell_{2}}=\sup _{\|u\|_{2},\|v\|_{2}=1}|\langle u, M v\rangle|$.

Spectral regularity lemma

Denote $R_{n, p}:=n^{2} p^{\Delta} \log (1 / p)$. Assuming $n p^{\Delta} \gg \log n$, for any fixed $\varepsilon>0$ (small) and $K \geq 1$ (large) we can cover \mathcal{X}_{n} with a collection of $e^{o\left(R_{n, p}\right)}$ balls

$$
B\left(X_{j}, \varepsilon\right)=\left\{X \in \mathcal{X}_{n}:\left\|X-X_{j}\right\|_{\ell_{2} \rightarrow \ell_{2}} \leq \varepsilon n p^{\Delta / 2}\right\}
$$

together with a set \mathcal{E}_{0} of measure $\mu_{n, p}\left(\mathcal{E}_{0}\right) \leq \exp \left(-c K R_{n, p}\right)$.

Spectral counting lemma

Let $p \in(0,1), L \geq 1$ and $\varepsilon>0$ be arbitrary. Suppose $\mathcal{K} \subseteq \mathcal{X}_{n}$ is a convex set of diameter at most $\varepsilon n p^{\Delta_{\star}(H)}$ in the spectral norm, and that for every induced strict subgraph $F \prec H$ there exists $X \in \mathcal{K}$ such that $t_{p}(F, X) \leq L$. Then

$$
\left|t_{p}\left(H, X_{1}\right)-t_{p}\left(H, X_{2}\right)\right| \lesssim_{H} L \varepsilon \quad \forall X_{1}, X_{2} \in \mathcal{K} .
$$

Here $\Delta_{\star}(H):=\frac{1}{2} \max _{\{u, v\} \in E(H)} \operatorname{deg}(u)+\operatorname{deg}(v), \quad t_{p}(H, X)=\frac{\operatorname{hom}(H, X)}{n^{v(H)} p^{e(H)}}$.

New norms for detecting localization (C.-Dembo-Pham '21)

To extend this approach to hypergraphs, need different norms (no spectral theory for tensors).

As motivation we first recall the cut norm for matrices:

$$
\|A-B\|_{\square}=\max _{U, V \subseteq[n]}\left|\sum_{i \in U, j \in V} A_{i j}-B_{i j}\right|=\max _{U, V \subseteq[n]}\left|\left\langle 1_{U} \otimes 1_{V}, A-B\right\rangle\right| .
$$

Counting lemma: $|\operatorname{hom}(H, A)-\operatorname{hom}(H, B)| \leq e(H)\|A-B\|_{\square}$.
Proof:

New norms for detecting localization (C.-Dembo-Pham '21)
To extend this approach to hypergraphs, need different norms (no spectral theory for tensors).
As motivation we first recall the cut norm for matrices:

$$
\|A-B\|_{\square}=\max _{U, V \subseteq[n]}\left|\sum_{i \in U, j \in V} A_{i j}-B_{i j}\right|=\max _{U, V \subseteq[n]}\left|\left\langle 1_{U} \otimes 1_{V}, A-B\right\rangle\right| .
$$

Counting lemma: $|\operatorname{hom}(H, A)-\operatorname{hom}(H, B)| \leq e(H)\|A-B\|_{\square}$.
Proof: A, B adjacency matrices of graphs over common vertex set $[n]$. pinkedgen \uparrow blue edges

New norms for detecting localization (C.-Dembo-Pham '21)
To extend this approach to hypergraphs, need different norms (no spectral theory for tensors).

As motivation we first recall the cut norm for matrices:

$$
\|A-B\|_{\square}=\max _{U, V \subseteq[n]}\left|\sum_{i \in U, j \in V} A_{i j}-B_{i j}\right|=\max _{U, V \subseteq[n]}\left|\left\langle 1_{U} \otimes 1_{V}, A-B\right\rangle\right| .
$$

Counting lemma: $|\operatorname{hom}(H, A)-\operatorname{hom}(H, B)| \leq e(H)\|A-B\|_{\square}$.
Proof: A, B adjacency matrices of graphs over common vertex set $[n]$. blue edges
For $\mathrm{H}=\mathrm{K}_{3}$:

$$
\begin{aligned}
& \# \Delta-\# \Delta \\
& =(\# \Delta-\# \Delta) \\
& +(\# \Delta-\# \Delta) \\
& +(\# \Delta-\# \Delta)
\end{aligned}
$$

New norms for detecting localization (C.-Dembo-Pham '21)

To extend this approach to hypergraphs, need different norms (no spectral theory for tensors).

As motivation we first recall the cut norm for matrices:

$$
\|A-B\|_{\square}=\max _{U, V \subseteq[n]}\left|\sum_{i \in U, j \in V} A_{i j}-B_{i j}\right|=\max _{U, V \subseteq[n]}\left|\left\langle 1_{U} \otimes 1_{V}, A-B\right\rangle\right|
$$

Counting lemma: $|\operatorname{hom}(H, A)-\operatorname{hom}(H, B)| \leq e(H)\|A-B\|_{\square}$.
Proof: A, B adjacency matrices of graphs over common vertex set $[n]$. blue edges

$$
\left.\begin{array}{rl}
\text { For } H=K_{3}: \\
\# \Delta-\# \Delta \Delta \\
=(\# \Delta-\# \Delta)
\end{array}\right\}(\# \Delta-\# \Delta)=\sum_{i, j, k=1}^{n} A_{i j} A_{j k}\left(A_{i k}-B_{i k}\right)
$$

$$
+(\# \Delta-\# \Delta)
$$

New norms for detecting localization (C.-Dembo-Pham '21)

The cut-norm counting lemma combines well with the Frieze-Kannan weak regularity lemma: every matrix M with bounded entries can be decomposed as

$$
M=M_{\text {struct }}+M_{\text {rand }}
$$

where $\left\|M_{r a n d}\right\|_{\square} \leq \varepsilon n^{2}$ and $M_{\text {struct }}$ is a linear combination of $O\left(1 / \varepsilon^{2}\right)$ cut matrices $T_{k}=1_{U_{k}} \otimes 1_{v_{k}}$.

Proof sketch: (Energy increment argument) Having found T_{1}, \ldots, T_{k}, let $M_{\text {struct }}^{(k)}$ be the projection of M to their linear span. If $\left\|M-M_{\text {struct }}^{(k)}\right\|_{\square} \leq \varepsilon n^{2}$ we stop; otherwise there is a cut matrix T_{k+1} with $\left|\left\langle T_{k+1}, M-M_{\text {struct }}^{(k)}\right\rangle\right|>\varepsilon n^{2}$. Must stop in $O\left(1 / \varepsilon^{2}\right)$ steps by Pythagoras's theorem and $\|M\|_{2}^{2}=O\left(n^{2}\right)$.
Basic argument has been put in very general setting by Gowers: For a finite collection \mathcal{T} of "structured" elements spanning a vector space V, define

$$
\|f\|=\inf \left\{\sum_{j}\left|\lambda_{j}\right|: f=\sum_{j} \lambda_{j} T_{j}\right\}, \quad f \in V .
$$

Then there is a decomposition $f=f_{\text {struct }}+f_{\text {rand }}$ with $\left\|f_{\text {struct }}\right\|+\left\|f_{\text {rand }}\right\|^{*} \leq\|f\|_{2}$. Stronger variants give $f=f_{\text {struct }}+f_{\text {rand }}+f_{\text {small }}$.

New norms for detecting localization (C.-Dembo-Pham '21)

Write $\mathcal{T}=\left\{1_{U} \otimes 1_{V}: U, V \subseteq[n]\right\}$ for the set of cut matrices ("test tensors"). In place of

$$
\|A-B\|_{\square}=\sup _{T \in \mathcal{T}}|\langle T, A-B\rangle|
$$

we use

$$
\|A-B\|_{\mathrm{B}}^{*}:=\sup _{T \in \mathcal{T}} \frac{|\langle T, A-B\rangle|}{\|T\|_{\mathrm{B}}}
$$

where the "size" of a cut matrix $T=1_{U} \otimes 1_{V}$ is

$$
\|T\|_{\mathrm{B}}:=\left(|U| \vee n_{0}\right) \cdot\left(|V| \vee n_{0}\right)
$$

with the cutoff scale $n_{0}:=n p^{\Delta-1}$.

Ex: Planted clique on $\asymp n p^{\Delta / 2}$ vertices is detected by cut $1_{U} \otimes 1_{U}$ with $|U|$ above the cutoff scale.
vs. Planted hub on $U \times[n]$ with $|U| \asymp n p^{\Delta} \ll n_{0}$.

The decomposition theorem

Decomposition theorem (matrix case)

Assuming $n p^{\Delta+1} \gg \log n$, for any fixed $\varepsilon>0$ (small) and $K \geq 1$ (large), outside of an exceptional set $\left.\mathcal{E}_{\star} \subset\{0,1\} \begin{array}{c}n \\ 2\end{array}\right)$ of measure $\mu_{n, p}\left(\mathcal{E}_{\star}\right) \leq \exp \left(-c K n^{2} p^{\Delta} \log (1 / p)\right)$, every adjacency matrix $A \in\{0,1\}^{\binom{n}{2}}$ can be decomposed as

$$
A=A_{\text {struct }}+A_{\text {rand }}
$$

where $A_{\text {struct }}$ is a linear combination of $k=O\left(K \varepsilon^{-2} p^{-\Delta}\right)$ cut matrices $T_{1}, \ldots T_{k}$, with

$$
\sum_{i=1}^{k}\left\|T_{i}\right\|_{\mathrm{B}} \leq K \varepsilon^{-2} n^{2} p^{\Delta-2}
$$

and

$$
\left\|A_{r a n d}\right\|_{\mathrm{B}}^{*} \leq \varepsilon p .
$$

Proof goes by energy increment argument, bounding the probability that the algorithm runs very long - key point is that with (very) high probability we can stop much sooner than in the Frieze-Kannan regularity lemma (worst case).

The counting lemma (2-graph case)

B^{*}-norm counting lemma

Let $p \in(0,1), L \geq 1$ and $\varepsilon>0$ be arbitrary. Suppose $\mathcal{E} \subseteq \mathcal{A}_{n}$ is a set of diameter at most εp in the B^{*}-norm, and that there exists $A_{0} \in \mathcal{E}$ such that $t_{p}\left(F, A_{0}\right) \leq L$ for every proper subgraph $F \subset H$. Then for every X_{1}, X_{2} in the convex hull of \mathcal{E},

$$
\left|t_{p}\left(H, X_{1}\right)-t_{p}\left(H, X_{2}\right)\right| \lesssim_{H} L \varepsilon .
$$

* This is a deterministic statement - no Erdős-Rényi measure here.
* Proof goes by induction on the number of edges, using the B^{*}-norm to control the error of one swap in terms of a sum over subgraphs, for which we apply inductive control and the assumption on A_{0}.
* Statement is identical for hypergraphs - I just need to tell you what the B^{*}-norm is for r-tensors.

Large deviations for random hypergraphs (C.-Dembo-Pham '21)

Consider now the Erdős-Rényi r-uniform hypergraph (r-graph) $\boldsymbol{G}=\boldsymbol{G}^{(r)}(n, p)$, identified with its symmetric adjacency tensor

$$
\boldsymbol{A}_{i_{1}, \ldots, i_{r}}=\mathbb{1}\left(\left\{i_{1}, \ldots, i_{r}\right\} \in E(\boldsymbol{G})\right) .
$$

As for graphs we denote the normalized H-homomorphism counts

$$
t_{p}(H, \boldsymbol{G})=\frac{1}{n^{v(H)} p^{e(H)}} \sum_{\phi: V(H) \rightarrow[n]} \prod_{e \in E(H)} \boldsymbol{A}_{\phi(e)} .
$$

Previous works on the upper tail:

- Lubetzky-Zhao '12: the case p is fixed and H is linear (all edge overlaps are of size 1). Proof follows CV11. Key: cut-norm counting lemma extends straightforwardly to $r>2$ for linear H.
- Liu-Zhao '19: $n^{-1 / 6 e(H)} \log n \ll p \ll 1, H$ a clique, or a certain linear 3-graph on 6 vertices.

Large deviations for random hypergraphs (C.-Dembo-Pham '21)

For a fixed r-graph H, what is the least unlikely way for \boldsymbol{G} to have many H-homomorphisms?

Lin \& Zhao's mixed hubs

3-hub

2-kubs

1-halb
(and symmetrized)

Large deviations for random hypergraphs (C.-Dembo-Pham '21)

Theorem (Joint tails for hypergraph homomorphisms)

Let H_{1}, \ldots, H_{m} be r-uniform hypergraphs of maximum degree Δ. For any fixed $\delta_{1}, \ldots, \delta_{m}>0$, assuming $p \gg n^{-1 /(\Delta+1)}$,

$$
\log \mathbb{P}\left(t_{p}\left(H_{k}, \boldsymbol{G}\right)>1+\delta_{k}, 1 \leq k \leq m\right)=-(1+o(1)) \Phi_{n, p}(\underline{H}, \underline{\delta}+o(1))
$$

where

$$
\Phi_{n, p}(\underline{H}, \underline{\delta}):=\inf _{X}\left\{D\left(\mu x \| \mu_{n, p}\right): t_{p}\left(H_{k}, X\right) \geq 1+\delta_{k}, 1 \leq k \leq m\right\} .
$$

- Note p may be fixed.
- Lower bound holds for $p \gg n^{-1 / \Delta}$, and upper bound holds in wider range for certain H_{k} (e.g. linear hypergraphs, sunflowers).

For the case that H is a clique, we get an explicit asymptotic when $p=o(1)$ by combining with a result of Liu-Zhao '19 on the entropic optimization problem.

Corollary A: The upper tail for clique homomorphisms
For $H=K_{k}^{(r)}$ the r-uniform clique on k vertices and $n^{\left.-1 /\binom{k-1}{r-1}+1\right)} \ll p \ll 1$,

$$
\left.\begin{array}{rl}
\log \mathbb{P}(\operatorname{hom}(H, \boldsymbol{G}) \geq & \geq(1+\delta) n^{k} p^{k}\binom{k}{r}
\end{array}\right) .
$$

Large deviations for random hypergraphs (C.-Dembo-Pham '21)

Liu and Zhao also considered a certain linear 3-graph - a simple case showing the geometry of the hypergraph LDP landscape is more complicated than in the 2-graphs case!

Corollary B

With H the above 3-graph, for $n^{-1 / 2} \ll p \ll 1$,

$$
\begin{aligned}
\log \mathbb{P}(\operatorname{hom}(H, \boldsymbol{G}) & \left.\geq(1+\delta) n^{k} p^{\binom{k}{r}}\right) \\
& =-\left(\frac{1}{6}+o(1)\right) \min \{\sqrt{9+3 \delta}-3, \sqrt{\delta}\} n^{3} p^{2} \log (1 / p) .
\end{aligned}
$$

The B^{*}-norms for tensors

For tensors of higher rank, in place of cuts we take the more general class of Bernoulli test tensors of the form

$$
T=\prod_{b \in B} \tau_{\mathrm{b}} \quad \text { (entrywise product) }
$$

where the B is a family of proper subsets $\mathrm{b} \subset[r]$, and τ_{b} are Bernoulli tensors depending only on coordinates in b. The "base" B is user-specified: for the counting lemma we

The class $\mathrm{B}=\binom{[r]}{r-1}$ always works, but sometimes there is significant benefit to using a more efficient base (e.g. for sunflowers can take a single b).
As before, $\|Z\|_{\mathrm{B}}^{*}=\max _{T \in \mathcal{T}} \frac{|\langle Z, T\rangle|}{\|T\|_{\mathrm{B}}}$.
The size $\|T\|_{B}$ of a test tensor is now a weighted combination of its volume and the volume of its factors: for the case $\mathrm{B}=\binom{[r]}{r-1}$,

$$
\|T\|_{\mathrm{B}}=n^{r} p^{r(\Delta-1)}+\|T\|_{1}+\sum_{\mathrm{b} \in \mathrm{~B}} n p^{\Delta-1}\left\|\tau_{\mathrm{b}}\right\|_{1}
$$

Thanks for your attention!

