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Extremal vs typical behavior

Many problems in combinatorics are of the form:

For two functions f , g : G ! R on a finite set G,
understand the behavior of f under a constraint on g .

Example: Counting subgraphs. G = Gn is the set of simple graphs over [n],

f (G) = hom(K3,G) , g(G) = hom(K2,G)

where hom(H,G) = #
�
� : V (H) ! [n] : �(e) 2 E(G) 8 e 2 E(H)

 
.

Extremal problem: Maximize f subject to g  L.

Kruskal–Katona Theorem ) hom(K3,G)  L3/2
. (Saturated by G = Kp

L
.)

Extensions to general (hyper)graph embeddings by Alon, Friedgut–Kahn.

Also a consequence of Finner’s generalized Hölder inequality.

Typical behavior: Typical size of f (G) for random G 2 G with g(G) = L

(microcanonical ensemble) or Eg(G) ⇠ L (grand canonical ensemble).

G = G(n, p) : E hom(K2,G) ⇠ n2p , E hom(K3,G) ⇠ n3p3 ⇠ L3/2p3/2
.

LLN and CLT (Ruciński ’88)
1



Extremal vs typical vs large deviation regimes

Between the extremal and typical regimes there are large deviation regimes.

Tail problem: For q 2 (p, 1), estimate
P(hom(K3,G(n, p)) ⇠ n

3
q
3).

Conditional structure problem: Typical structure of

G on the (atypical) large deviation event? Related

to stability of optimizers for the extremal problem

(cf. recent works of Keevash on Kruskal–Katona,

Ellis et al. on Loomis–Whitney).

There’s also the lower tail. Extremal problem: Razborov’s theorem.

Large deviations: Chatterjee–Varadhan ’11, Zhao ’15, Kozma–Samotij ’21.

Large deviations problem inherits some structure of the extremal problem, but

there are also new phenomena (and in the hypergraph setting the picture is

even more rich, still poorly understood).

In this talk: I’ll motivate a general study of the high-dimensional geometry of

the space of graphs Gn ⇢ R(
n

2), in as seen under various norms (old and new).
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Large deviation principles (LDPs)

In the general setting of a topological measurable space X , an LDP provides a

description of the large scale landscape of X with respect to a sequence of

probability measures µn.

Informally it says that for large n,

µn(E) ⇡ exp(�Rn inf{J(x) : x 2 E})

for arbitrary E in the topology, where Rn is the speed and J : X ! R+ is the

rate function.

Applying to level sets, yields results for joint tail events for continuous

functionals, e.g. of the form

µn({f1 > L1, f2 > L2}) ⇡ exp

⇣
� Rn inf

n
J(x) : f1(x) > L1, f2(x) > L2

o⌘
.

Integration by parts gives free energy for Gibbs measures (Varadhan’s Lemma).
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Large deviation principles (LDPs)

LDP: µn(E) ⇡ exp(�Rn · inf{J(x) : x 2 E}).

Results for tails P(hom(H,G) � L) are of this form, with X = R and µn the

distribution of hom(H,G).

However, a more powerful result would be to have an LDP for G(n, p) and

deduce tails for functionals f : Gn ! R, such as embeddings counts.

Problem: This doesn’t fit the classical framework: The Erdős–Rényi measures

µn,p are not a sequence of measures on fixed topological space X , but rather a

growing sequence of spaces Gn.

Solution: The topological space W of graphons provides a completion for the

space of all graphs of all sizes.

Theorem (Chatterjee–Varadhan ’11)

For fixed p 2 (0, 1) the sequence of Erdős–Rényi measures µn,p on W satisfies

an LDP with speed n2
and a certain rate function.
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The regularity method (topological perspective)

Graphon theory provides a topological reformulation of the regularity method

from extremal graph theory. In particular we have the following qualitative

versions of classic lemmas:

The Regularity Lemma: W is compact (after quotient by vertex relabelings).

The Counting Lemma: Homomorphism counts extend to continuous

(nonlinear) functionals on W.

The Chatterjee–Varadhan LDP (whose proof hinges on the regularity lemma)

combined with the Counting Lemma yields LDPs for homormorphism counts in

G n,p, reducing the upper tail to an optimization problem for the rate function

(analyzed in CV11 and Lubetzky–Zhao ’12).

Problem: for p = o(1), graphon space cannot provide an informative LDP.

? Can’t be rectified by rescaling of subgraph statistics and measures µn,p,

due to a localization phenomenon: main contribution to large deviations

comes from a vanishing proportion of edges in a dense configuration

(recall cliques and hubs).

? These structures can occur at various scales.
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Quantitative large deviations for random graphs (C.–Dembo ’18)

The CV LDP is really just breaking the space Gn
⇠= {0, 1}(

n

2) into

neighborhoods of a bounded number of graphons. Reduces to studying the

probability G(n, p) lies in a small ball in the cut norm.

This can be made quantitative. Key fact: In a topological vector space, we

have the non-asymptotic bound (consequence of minimax theorem)

µ(K)  exp(� inf
x2K

J(x))

for convex K, appropriate J (convex dual of log-MGF y 7! log
R
ehy,·idµ) .

So we can get quantitative tail estimates for hom(H,G) by e�ciently covering

Xn := [0, 1](
n

2) with convex sets on which hom(H, ·) does not vary much, where

hom(H,X ) =

X

�:V (H)![n]

Y

e2E(H)

X�(e).

Estimates on covering numbers = quantitative compactness.

Controlling variation of

hom(H, ·) (under some norm) = quantitative counting lemma.

In C.–Dembo ’18 we implemented this approach using the spectral norm.
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Quantitative large deviations for random graphs (C.–Dembo 18)

Regard X 2 Xn = [0, 1](
n

2) as adjacency matrices for edge-weighted graphs.

Recall the spectral operator norm: kMk`2!`2 = supkuk2,kvk2=1 |hu,Mvi|.

Spectral regularity lemma

Denote Rn,p := n2p�
log(1/p). Assuming np� � log n, for any fixed " > 0

(small) and K � 1 (large) we can cover Xn with a collection of eo(Rn,p) balls

B(Xj , ") = {X 2 Xn : kX � Xjk`2!`2  "np�/2}

together with a set E0 of measure µn,p(E0)  exp(�cKRn,p).

Spectral counting lemma

Let p 2 (0, 1), L � 1 and " > 0 be arbitrary. Suppose K ✓ Xn is a convex set

of diameter at most "np�?(H)
in the spectral norm, and that for every induced

strict subgraph F � H there exists X 2 K such that tp(F ,X )  L. Then

|tp(H,X1)� tp(H,X2)| .H L" 8X1,X2 2 K .

Here �?(H) := 1
2 max{u,v}2E(H) deg(u) + deg(v) , tp(H,X ) = hom(H,X )

nv(H)pe(H) .
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New norms for detecting localization (C.–Dembo–Pham ’21)

To extend this approach to hypergraphs, need di↵erent norms (no spectral

theory for tensors).

As motivation we first recall the cut norm for matrices:

kA� Bk⇤ = max
U,V✓[n]

��
X

i2U,j2V

Aij � Bij

���� = max
U,V✓[n]

��h1U ⌦ 1V ,A� Bi
��.

Counting lemma: | hom(H,A)� hom(H,B)|  e(H)kA� Bk⇤.

Proof:
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New norms for detecting localization (C.–Dembo–Pham ’21)

The cut-norm counting lemma combines well with the Frieze–Kannan weak

regularity lemma: every matrix M with bounded entries can be decomposed as

M = Mstruct +Mrand

where kMrandk⇤  "n2
and Mstruct is a linear combination of O(1/"2) cut

matrices Tk = 1Uk
⌦ 1Vk

.

Proof sketch: (Energy increment argument) Having found T1, . . . ,Tk , let

M(k)
struct be the projection of M to their linear span. If kM �M(k)

structk⇤  "n2
we

stop; otherwise there is a cut matrix Tk+1 with |hTk+1,M �M(k)
structi| > "n2

.

Must stop in O(1/"2) steps by Pythagoras’s theorem and kMk22 = O(n2
).

Basic argument has been put in very general setting by Gowers: For a finite

collection T of “structured” elements spanning a vector space V , define

kf k = inf

⇢X

j

|�j | : f =

X

j

�jTj

�
, f 2 V .

Then there is a decomposition f = fstruct + frand with kfstructk+ kfrandk⇤  kf k2.
Stronger variants give f = fstruct + frand + fsmall .
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New norms for detecting localization (C.–Dembo–Pham ’21)

Write T = {1U ⌦ 1V : U,V ✓ [n]} for the set of cut matrices (“test tensors”).

In place of

kA� Bk⇤ = sup
T2T

|hT ,A� Bi|

we use

kA� Bk⇤B := sup
T2T

|hT ,A� Bi|
kTkB

where the “size” of a cut matrix T = 1U ⌦ 1V is

kTkB := (|U| _ n0) · (|V | _ n0)

with the cuto↵ scale n0 := np��1
.

Ex: Planted clique on ⇣ np�/2
vertices is detected by cut 1U ⌦ 1U

with |U| above the cuto↵ scale.

vs. Planted hub on U ⇥ [n] with |U| ⇣ np� ⌧ n0.
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The decomposition theorem

Decomposition theorem (matrix case)

Assuming np�+1 � log n, for any fixed " > 0 (small) and K � 1 (large),

outside of an exceptional set E? ⇢ {0, 1}(
n

2) of measure

µn,p(E?)  exp(�cKn2p�
log(1/p)), every adjacency matrix A 2 {0, 1}(

n

2) can

be decomposed as

A = Astruct + Arand

where Astruct is a linear combination of k = O(K"�2p��
) cut matrices

T1, . . .Tk , with

kX

i=1

kTikB  K"�2n2p��2

and

kArandk⇤B  "p.

Proof goes by energy increment argument, bounding the probability that the

algorithm runs very long – key point is that with (very) high probability we can

stop much sooner than in the Frieze–Kannan regularity lemma (worst case).
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The counting lemma (2-graph case)

B
⇤-norm counting lemma

Let p 2 (0, 1), L � 1 and " > 0 be arbitrary. Suppose E ✓ An is a set of

diameter at most "p in the B
⇤
-norm, and that there exists A0 2 E such that

tp(F ,A0)  L for every proper subgraph F ⇢ H. Then for every X1,X2 in the

convex hull of E ,
|tp(H,X1)� tp(H,X2)| .H L ".

? This is a deterministic statement – no Erdős–Rényi measure here.

? Proof goes by induction on the number of edges, using the B
⇤
-norm to

control the error of one swap in terms of a sum over subgraphs, for which

we apply inductive control and the assumption on A0.

? Statement is identical for hypergraphs – I just need to tell you what the

B
⇤
-norm is for r -tensors.
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Large deviations for random hypergraphs (C.–Dembo–Pham ’21)

Consider now the Erdős–Rényi r-uniform hypergraph (r -graph) G = G (r)
(n, p),

identified with its symmetric adjacency tensor

Ai1,...,ir = ({i1, . . . , ir} 2 E(G)).

As for graphs we denote the normalized H-homomorphism counts

tp(H,G) =
1

nv(H)pe(H)

X

�:V (H)![n]

Y

e2E(H)

A�(e).

Previous works on the upper tail:

• Lubetzky–Zhao ’12: the case p is fixed and H is linear (all edge overlaps

are of size 1). Proof follows CV11. Key: cut-norm counting lemma

extends straightforwardly to r > 2 for linear H.

• Liu–Zhao ’19: n�1/6e(H)
log n ⌧ p ⌧ 1, H a clique, or a certain linear

3-graph on 6 vertices.
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Large deviations for random hypergraphs (C.–Dembo–Pham ’21)

For a fixed r -graph H, what is the least unlikely way for G to have many

H-homomorphisms?

14
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Large deviations for random hypergraphs (C.–Dembo–Pham ’21)

Theorem (Joint tails for hypergraph homomorphisms)

Let H1, . . . ,Hm be r -uniform hypergraphs of maximum degree �. For any

fixed �1, . . . , �m > 0, assuming p � n�1/(�+1)
,

log P
⇣
tp(Hk ,G) > 1 + �k , 1  k  m

⌘
= �(1 + o(1))�n,p

�
H, � + o(1)

�
,

where

�n,p(H, �) := inf
X

n
D(µXkµn,p) : tp(Hk ,X ) � 1 + �k , 1  k  m

o
.

• Note p may be fixed.

• Lower bound holds for p � n�1/�
, and upper bound holds in wider range

for certain Hk (e.g. linear hypergraphs, sunflowers).
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Large deviations for random hypergraphs (C.–Dembo–Pham ’21)

For the case that H is a clique, we get an explicit asymptotic when p = o(1) by

combining with a result of Liu–Zhao ’19 on the entropic optimization problem.

Corollary A: The upper tail for clique homomorphisms

For H = K (r)
k

the r -uniform clique on k vertices and n�1/((
k�1
r�1)+1) ⌧ p ⌧ 1,

log P
⇣
hom(H,G) � (1 + �)nkp(

k

r
)
⌘

= �(1 + o(1))min

n�r/k

r !
,

�
(r � 1)!k

o
nrp(

k�1
r�1) log(1/p).

16
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Large deviations for random hypergraphs (C.–Dembo–Pham ’21)

Liu and Zhao also considered a certain linear 3-graph – a

simple case showing the geometry of the hypergraph LDP

landscape is more complicated than in the 2-graphs case!

Corollary B

With H the above 3-graph, for n�1/2 ⌧ p ⌧ 1,

log P
⇣
hom(H,G) � (1 + �)nkp(

k

r
)
⌘

= �
⇣
1

6
+ o(1)

⌘
min

np
9 + 3� � 3,

p
�
o
n3p2

log(1/p) .

17



The B⇤-norms for tensors

For tensors of higher rank, in place of cuts we take the

more general class of Bernoulli test tensors of the form

T =

Y

b2B

⌧b (entrywise product)

where the B is a family of proper subsets b ⇢ [r ], and ⌧b
are Bernoulli tensors depending only on coordinates in b.

The “base” B is user-specified: for the counting lemma we

just need that it “dominates” all edge overlaps.

The class B =
�

[r ]
r�1

�
always works, but sometimes there is significant benefit to

using a more e�cient base (e.g. for sunflowers can take a single b).

As before, kZk⇤B = maxT2T
|hZ ,Ti|
kTkB

.

The size kTkB of a test tensor is now a weighted combination of its volume

and the volume of its factors: for the case B =
�

[r ]
r�1

�
,

kTkB = nrpr(��1)
+ kTk1 +

X

b2B

np��1k⌧bk1 .
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Thanks for your attention!
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