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Exponential random graph models (ERGMs)

Let Gn denote the set of simple graphs over [n] = {1, . . . , n}.
(We identify Gn with {0, 1}(

[n]

2
)
.)

An ERGM is a probability measure on Gn with mass function of the form

1

Zn(↵,�)
exp

�
n
2
H(G ;�)� ↵e(G)

�

where ↵,�1, . . . ,�m 2 R are the model parameters, e(G) =
P

1i<jn
Gij , and

H(G ;�) =
mX

k=1

�k fk(G)

for a fixed collection of graph statistics f1, . . . , fm : Gn ! R.

Ex. 1: Erdős–Rényi distribution. Taking H ⌘ 0, ↵ = log
1�p

p
gives mass

function p
e(G)

(1� p)(
n

2
)�e(G)

.

Ex. 2: Edge-triangle model. H(G ;�) = �t(K3,G), with

t(K3,G) =
1

n3

nX

i1,i2,i3=1

Gi1,i2Gi2,i3Gi1,i3 .
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ERGMs: Motivation and challenges
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◆

• Introduced in the social sciences literature in the 80s–90s as parametric

family of distributions for modeling social networks. [Frank & Strauss ’86,

Wasserman & Pattison ’96].

• Want graphs with transitivity: friends of friends are more likely to be

friends.

• The separable form of the Hamiltonian implies that the functions e, fk are

su�cient statistics for the model parameters ↵,�k .

• Estimation of model parameters by MLE requires knowledge of the

partition function Z(↵,�), which is often done by sampling using local

MCMC algorithms.
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ERGMs: Motivation and challenges
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◆

Many problems in practice [Strauss ’86, Snijders ’02, Handcock ’02, ’03].

1. No transitivity!

2. Degeneracy: typical samples are either nearly empty or nearly full (edge

density ⇠ 0 or ⇠ 1).

3. Slow convergence of sampling algorithms in some parameter regimes
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Rigorous results (dense ERGMs)
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◆

Bhamidi–Bressler–Sly ’08: characterization of high/low-temperature regimes in

“ferromagnetic” case �k > 0.

• Low-temperature: Exponential convergence time for MCMC

• High-temperature: Polynomial convergence, but typical samples resemble

Erdős–Rényi graphs (no transitivity!).

Chatterjee–Diaconis ’12 (using Chatterjee–Varadhan ’11 LDP for the

Erdős–Rényi graph)

• Establish the näıve mean-field (NMF) variational approximation for the

partition function.

• Ferromagnetic ERGMs are ⇡ mixture of Erdős–Rényi graphs.
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Rigorous results (dense ERGMs)

Lubetzky–Zhao ’12: Showed that for F �-regular, broken symmetry is restored

for edge-F models of the form
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◆

for �-regular F and a fractional power � 2 (0, �

e(F )
).

Quantitative nonlinear LDT (Chatterjee–Dembo ’14, Eldan ’16, . . . ). Allowing

n-dependent model parameters, density p = o(1).

• Chatterjee–Dembo ’14: Validity of NMF approximation.

• Eldan–Gross ’18: ERGMs are approximately mixtures of stochastic block

models, with barycenters close to critical points of NMF free energy.
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Sparse ERGMs (C.–Dembo ’22+)

Fix h : Rm

+ ! R, and graphs F1, . . . ,Fm of max-degree � � 2, and put

H(G) = h

✓
t(F1,G)

pe(F1)
, . . . ,

t(Fm,G)

pe(Fm)

◆

where

t(F ,G) =
1

nv(F )

X

�:V(F )![n]

Y

{u,v}2E(F )

G�(u),�(v)

is the homomorphism density of F in G .

(Recall ex. t(K3,G) =
1

n3

P
n

i1,i2,i3=1
Gi1,i2Gi2,i3Gi1,i3 .)

With large deviations rate parameter rn,p := n
2 · p�

log(1/p) we define

⌫Hn,p(E) :=
Eern,pH(Gn,p) (G n,p 2 E)

exp(⇤H
n,p)

, E ✓ Gn.

with ⇤
H

n,p := logE exp(rn,pH(G n,p)). (Tilt of Erdős–Rényi by e
rn,pH(·)

.)
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Naive mean-field (NMF) approximation and solution

⌫Hn,p(E) = E (G n,p 2 E) exp
�
rn,pH(G n,p)� ⇤H

n,p

�

Gibbs / Donsker–Varadhan variational principle:

⇤
H

n,p = sup
µ

�
rn,pEG⇠µH(G)� D(µkµn,p)

 
.

NMF approximation posits the sup is ⇡ attained on product distributions µQ ,

parametrized by set Qn = [0, 1](
[n]

2
)
of edge-weighted graphs Q :

�
[n]

2

�
! [0, 1].

⇤
H

n,p ⇠ sup
Q2Qn

�
rn,pEG⇠µQ

H(G)� D(µQkµn,p)
 

⇠ sup
Q2Qn

⇢
rn,pH(Q)�

X

i<j

Ip(Qij)

�
=:  

H

n,p

with Ip(q) := D(Ber(q)kBer(p)).
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Main results I: NMF approximation

 
H

n,p := sup
Q2Qn

⇢
rn,pH(Q)�

X

i<j

Ip(Qij)

�
.

Theorem (C.–Dembo ’22)

Assume n
�1/(�+1) ⌧ p  1 and h is continuous and non-decreasing in each

argument, with h(x) = okxk!1(
P

m

k=1
x
�/e(Fk )
k

). Then ⇤H

n,p =  
H

n,p + o(rn,p).

When p = o(1) we further reduce to a 2-dimensional optimization problem.

For any graph F there is an explicit function TF : [0,1)
2 ! [0,1) such that

the following holds.

Theorem (C.–Dembo ’22)

With hypotheses as in the previous result, assume further that p = o(1).

Then

1

rn,p
⇤
H

n,p !  (F , h) := sup
a,b�0

⇢
h(TF1

(a, b), . . . ,TFm (a, b))�
1

2
a� b

�
.
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Main results II: Typical structure for sparse ERGMs

For " > 0 and I , J ⇢ [n], denote by G I ,J
n (") the set of graphs G 2 Gn such that

X

{i,j}⇢I

Gij � (1� ")
1

2
|I |2 and

X

i2J,j2Jc

Gij � (1� ")|J|(n � |J|) .

(G has an almost-clique at I and an almost-hub (biclique) at J).

Set Gn(a, b, ") :=
[

I ,J⇢[n] disjoint

|I |=b
p
ap

�/2
nc , |J|=bbp�nc

G I ,J
n (")

9



Main results II: Typical structure for sparse ERGMs

Gn(a, b, ") :=
[

I ,J⇢[n] disjoint

|I |=b
p
ap

�/2
nc , |J|=bbp�nc

G I ,J
n (")

Theorem (C.–Dembo ’22)

With n
�1/(�+1) ⌧ p ⌧ 1 and h as before, for any " > 0 there exists

⌘ = ⌘(F , h, ") > 0 such that for G ⇠ ⌫Hn,p and all n su�ciently large,

P
⇣
G 2

[

(a,b)2Opt( )

Gn(a, b, ")
⌘
� 1� e

�⌘n

where Opt( ) ⇢ R2

�0 is the set of optimizers for  (F , h).

Also have a stronger result in terms of spectral norm neighborhoods, in a

narrower range of p.
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Example: (Tamed) edge-triangle model

Let G ⇠ ⌫Hn,p with H(G ;�) = �
�
t(K3,G)

p3
� 1

�
1/3

+
.

1. For fixed � 2 (0, 16

9
), " > 0, we have G 2 Gn(0, 1

3
�3/2, ") whp.

2. For fixed � 2 (
16

9
,1), " > 0, we have G 2 Gn(�

2, 0, ") whp.
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Example: Edge-K3-P3 model
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Quantitative large deviations (C.–Dembo–Pham ’21)

Recall that a cut matrix is a rank-1 Boolean matrix C = 1S1
T

T . The following

generalizes the classic Frieze–Kannan decomposition:

Decomposition Theorem (matrix case)

Assuming np
�+1 � log n, for any fixed " > 0 (small) and K � 1 (large),

outside an exceptional set Eexcep ⇢ {0, 1}(
n

2
)
of measure µn,p(Eexcep)  p

cKn
2
p
�

,

every adjacency matrix A 2 {0, 1}(
n

2
)
can be decomposed as

A = Astruct + Arand

where Astruct is a linear combination of O(K"�2
p
��

) cut matrices Ci , with

kX

i=1

kCikB  K"�2
n
2
p
��2

and kArandk⇤B  "p.

From this we get a quantitative LDP.

Similar statement for r -tensors (under general B
⇤
-norms).
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Final remarks

• Result on typical structure for ERGMs is derived from a similar result for

typical structure of G n,p conditioned on joint upper tail events for

t(Fk ,G n,p), which in turn builds on previous works on large deviations for

Erdős–Rényi graphs (Bhattacharya et. al ’16, C.–Dembo ’18,

C.–Dembo–Pham ’21).

• Main new ingredient: stability of optimizers in NMF problem  
H

n,p.

• C.–Dembo–Pham ’21 develops LDPs for random hypergraphs. ERHMs?

Cf. Stasi et al ’14.

• Related work on structure of random graphs picked uniformly under edge

and F -count constraints. (Radin, Sadun et. al). Multipodality conjecture.

• Taming growth of Hamiltonian has “cured” the worst form of degeneracy,

but maybe clique-hub graphs are also too degenerate for modeling social

networks. Might get richer structure from degree constraints,

antiferromagnetic models, other statistics fk(G), . . .

• Also open: monotone decreasing h (e.g. �k < 0). Need to analyze  
H

n,p.
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