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Random graphs

In this talk, a graph G is a set of vertices [n] = {1, . . . , n}
together with a set E of pairs {i , j} ⊂ [n] called edges.

Write Gi,j for the Boolean 0/1 variable that is 1 when

{i , j} is an edge in G .

A random graph is formed by choosing the edge set E in a

random way. The Gi,j are then
(
n
2

)
(possibly correlated)

Bernoulli random variables. In this talk n is large!

Why random graphs?

• Model large networks, statistical estimation for social

networks

• Extremal graph theory (probabilistic method of Erdős)

• Mean field models for statistical physics, dynamical

systems, constraint satisfaction problems, . . .
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Random graph models

Erdős–Rényi graphs:

∗ G(n, p) : the edge variables Gi,j are independent, P(Gi,j = 1) = p.

• Gn,m : Edge set is uniform random of size m.

Exponential random graph models (ERGMs): Graph G is chosen with

probability proportional to exp(H(G)) for some function (“Hamiltonian”) H,

e.g. the edge-triangle model H(G) = αe(G) + βN∆(G), where

e(G) :=
∑

1≤i<j≤n

Gi,j = # edges , N∆(G) :=
∑

{i,j,k}⊂[n]

Gi,jGj,kGi,k = # triangles

Random d-regular graphs. Uniform random under

constraint that every vertex has d neighbors.

Expanders with high probability.

Random geometric graphs. Points (Xi )
n
i=1 sampled

from a distribution/manifold in Rd , connected if

sufficiently close.

Preferential attachment models (Barabási–Albert).

Dynamically generated. Power-law degree distribution,

small-world phenomenon. Source: The Opte Project
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Edges and triangles in Erdős–Rényi graphs

Let G random graph from the Erdős–Rényi G(n, p) model.

So P(G = G) = pe(G)(1− p)(
n
2)−e(G). (Think of p as fixed for now.)

Consider first the random number of edges e(G) =
∑

i<j Gi,j .

• Binomial(
(
n
2

)
, p) distribution

• Law of averages ⇒ e(G) typically ≈ p
(
n
2

)
.

• Central limit theorem (Laplace):
e(G)−p(n2)√
p(1−p)(n2)

⇒ Normal

• Large deviations (Laplace): for q ∈ [0, 1],

log P
(
e(G) ∼ q

(
n
2

))
∼ −Ip(q)

(
n
2

)
where Ip(q) = q log q

p
+ (1− q) log 1−q

1−p
.

Now consider the number of triangles N∆(G) =
∑

{i,j,k}⊂[n] Gi,jGj,kGk,ℓ.

• Cubic polynomial in
(
n
2

)
Bernoulli variables. E[N∆(G)] = p3

(
n
3

)
.

• LLN (exercise), CLT (Ruciński ’88)

• Large deviations: The Infamous Upper Tail problem,

a driving example for Nonlinear large deviations theory.
∗ Other examples: Eigenvalues of random matrices,

k-term arithmetic progressions in random subsets of Z. 3



The Infamous Upper Tail (Janson–Ruciński ’02)

Problem A: Estimate P{N∆(G) ≥ (1 + δ)EN∆(G)} for fixed δ > 0.

• Janson–Oleszkiewicz–Ruciński ’04, Kim–Vu ’04

• DeMarco–Kahn ’11, Chatterjee ’11: show

− log P{N∆(G) ≥ (1 + δ)EN∆(G)} ≍δ n2p2 log(1/p)

Dependence on δ ?

• Dense case (p fixed): Chatterjee–Varadhan, Lubetzky–Zhao ’11

(more on this soon)

• Sparse case: P{N∆(G) ≥ (1 + δ)EN∆(G)} = p(1+o(1))c(δ)n2p2

where c(δ) = min{ δ2/3

2
, δ
3
}, assuming n−κ ≪ p ≪ 1 with

∗ κ = 1
41

[Chatterjee–Dembo ’14] + [Lubetzky–Zhao ’14]

∗ κ = 1
18

[Eldan ’16]

∗ κ = 1
3

[C.–Dembo ’18]

∗ κ = 1
2

[Augeri ’18]

∗ κ = 1 [Harel–Mousset–Samotij ’19].

Also results on the upper tail for general F -counts with κ = κ(F ),

formulas obtained by Bhattacharya–Ganguly–Lubetzky–Zhao ’16.
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The Infamous Upper Tail (Janson–Ruciński ’02)

Problem B: Conditional on {N∆(G) ≥ (1 + δ)EN∆(G)}, what does the graph

look like? How are the edges distributed?

Three natural guesses:

1. Boost in edge density

to q = (1 + δ)1/3p

2. Appearance of a clique

of size ∼ δ1/3pn

3. Appearance of a hub (biclique)

of size ∼ 1
3
δp2n.

Sparse case: For n−1/2 ≪ p ≪ 1, phase transition from hub to clique as δ crosses 27
8
.

(LZ14, HMS19, C.–Dembo ’22)

Dense case (p fixed): {N∆(G) ∼ q3
(n
3

)
} for p < q ≤ 1.

• Large deviation principle (LDP) for the ER graph

(Chatterjee–Varadhan ’11)

• LDP optimization problem and characterization of the

symmetric regime (Lubetzky–Zhao ’12)

• Problem B still open in the symmetry breaking regime.
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Graphs as functions (graphons)

A Large Deviation Principle (LDP) for a sequence of random elements Xn of a

compact metric space X says for large n and small ε,

log P(Xn ∈ B(x , ε)) ≈ −rnJ(x)

for some speed rn and rate function J : X → R+.

How can we view a sequence Gn of Erdős–Rényi graphs on [n] as elements of a

single metric space?

We can identify any graph G over [n] with a symmetric step function

g(x , y) = G⌊xn⌋,⌊yn⌋ on the unit square [0, 1]2.

Embeds all finite graphs in the space W of symmetric functions

g : [0, 1]2 → [0, 1], equipped with a metric induced by the cut norm

∥f ∥□ = supS,T⊂[0,1] |
∫
S×T

f |. This is graphon space (Lovász et al. ’06–’10). 6



Large deviations in graphon space (Chattjeree–Varadhan ’11)

Graphon space provides a topological reformulation of the classic regularity

method from extremal graph theory.

Key fact 1: The space W of graphons with cut-norm topology is compact

(≈ Szemerédi’s regularity lemma).

Theorem (Chatterjee–Varadhan)

For fixed p ∈ (0, 1), the sequence of Erdős–Rényi graphs {Gn}n≥1 ⊂ W
satisfies an LDP of speed n2, with rate function J(g) =

∫
[0,1]2

Ip(g(x , y))dxdy .

Key fact 2: The triangle-counting function N∆(·) (or more generally the count

of any fixed subgraph F ) extends to a continuous function on W.

(≈ the counting lemma).

Corollary: Upper tails for subgraph counts (apply the LDP to super-level sets).

Moral: The cut-norm topology is the right topology if you’re interested in

subgraph counts (for dense graphs at least).
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Large deviations for sparse graphs

Problem: for p = o(1), there is a localization phenomenon: main contribution

to large deviations comes from a vanishing proportion of edges in a dense

configuration (recall cliques and hubs).

These structures can occur at various scales are invisible to the cut norm.

Related to challenges for developing (useful) sparse graph limit theories.

Quantitative approach: under some norm ∥ · ∥∗ on the set Gn of graphs on [n],

• bound covering numbers (compactness)

• bound Lipschitz constants of F -count functions NF (G) (continuity)

C.–Dembo ’18: used the spectral norm (applied to the adjacency matrix),

covering Gn with a net of low-rank matrices, together with a tiny “bad” set.

C.–Dembo–Pham ’21: developed generalizations ∥ · ∥B of the cut-norm to the

hypergraph setting. Decomposition of 0/1 tensors as A = Astruct + Arand , where

• Astruct is a short linear combination of “structured”

tensors of controlled size under ∥ · ∥B , and

• the pseudorandom remainder Arand is small under

the dual norm ∥ · ∥∗B . 8



Exponential random graph models (ERGMs)

Recall Gn is the set of graphs over vertex set [n] = {1, . . . , n}.

An ERGM is a probability measure on Gn with mass function of the form

1

Zn(α,β)
en

2H(G ;β)−αe(G)

where α, β1, . . . , βm ∈ R are the model parameters, e(G) =
∑

1≤i<j≤n Gi,j , and

H(G ;β) =
m∑

k=1

βk fk(G)

for a fixed collection of graph statistics fk(G). Common choice is the densities

of some fixed graphs F1, . . . ,Fm in G .

Ex. 1: Erdős–Rényi distribution. Taking H ≡ 0, α = log 1−p
p

gives mass

function pe(G)(1− p)(
n
2)−e(G).

Ex. 2: Edge-triangle model. H(G ;β) = βN∆(G)/
(
n
3

)
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ERGMs: Motivation and challenges

1

Zn(α,β)
exp

(
n2

m∑
k=1

βk fk(G)− αe(G)

)

• Introduced in the social sciences literature in the 80s–90s as parametric

family of distributions for modeling social networks. [Frank & Strauss ’86,

Wasserman & Pattison ’96].

• Want graphs with transitivity: friends of friends are more likely to be

friends.

• The separable form of the Hamiltonian implies that the functions e, fk are

sufficient statistics for the model parameters α, βk .

• Estimation of model parameters by MLE requires knowledge of the

partition function Z(α,β), which is often done by sampling using local

MCMC algorithms.
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ERGMs: Motivation and challenges

1

Zn(α,β)
exp

(
n2

m∑
k=1

βk fk(G)− αe(G)

)

Many problems in practice [Strauss ’86, Snijders ’02, Handcock ’02, ’03].

1. No transitivity!

2. Degeneracy: typical samples are either nearly empty or nearly full (edge

density ∼ 0 or ∼ 1).

3. Slow convergence of sampling algorithms in some parameter regimes

Bhamidi–Bressler–Sly ’08: characterization of high/low-temperature regimes in

“ferromagnetic” case βk > 0 when fk(G) are subgraph densities.

• Low-temperature: Exponential convergence time for MCMC

• High-temperature: Polynomial convergence, but typical samples resemble

Erdős–Rényi graphs (no transitivity!).

Chatterjee–Diaconis ’12 (using Chatterjee–Varadhan ’11 LDP) show

ferromagnetic ERGMs are ≈ mixtures of Erdős–Rényi graphs.
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Typical structure of sparse ERGMs (C.–Dembo ’22)

Consider distributions of the general form P(G = G) ∝ exp(rn,pH(G)− αe(G)),

H(G) = h

(
t(F1,G)

pe(F1)
, . . . ,

t(Fm,G)

pe(Fm)

)
for a fixed continuous, non-decreasing h : Rm

+ → R, and graphs F1, . . . ,Fm of

max-degree d ≥ 2, where t(Fk ,G) is the density of Fk in G .

Let Gn(a, b) be the set of G with an almost-clique I

and an almost-hub J, for some I , J ⊂ [n] of sizes

|I | ∼
√
apd/2n, |J| ∼ bpdn.

We show under growth and decay conditions on h and p,

with high probability, G ∈ Gn(a, b) for some (a, b)

in the set of optimizers for

sup
a,b≥0

{
h(T1(a, b), . . . ,Tm(a, b))−

1

2
a− b

}
for some explicit functions Tk determined by Fk .
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Conditional structure of sparse Erdős–Rényi graphs (C.–Dembo ’22)

On the 2D manifold of “clique-hub” graphs (up to relabeling vertices), level

sets of subgraph-counting functions (green/blue/yellow) and relative entropy

(red) are ≈smooth curves.

Upper tail event is light-blue region.

Points (a, b) minimizing the entropy 1
2
a+ b are circled in red.

Here δ3 = 100 and (δ1, δ2) is A. (3, 24), B. (4, 25), C. (4, 31.5). 13



Example: (Tamed) Edge-Triangle Model

Let H(G ;β) = β
( t(∆,G)

p3
− 1

)1/3
+

.

1. For fixed β ∈ (0, 16
9
), we have G ∈ Gn(0,

1
3
β3/2) with high prob.

2. For fixed β ∈ ( 16
9
,∞), we have G ∈ Gn(β

2, 0) with high prob.
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Example: Edge-K3-P3 model
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Directions for the future

• Taming growth of Hamiltonian has “cured” the worst form of degeneracy

for ERGMs, but clique-hub graphs still don’t look much like social

networks. Might get richer structure from degree constraints,

antiferromagnetic models, other statistics fk(G), . . .

• In C.–Dembo–Pham ’21 we get quantitative LDPs for random

hypergraphs, but explicit upper-tail formulas are only known in a few

cases, such as clique counts (Liu–Zhao ’19)

• ERHMs?

• LDPs for random regular graphs: Bhattacharya–Dembo ’19, Gunby ’21.
LDPs mostly open for:

∗ Random geometric graphs (Chatterjee–Harel ’21),

∗ Random simplicial complexes (Samorodnitsky–Owada ’22)
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Thanks for your attention!
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