Large deviations theory for random graphs

Mathematics & Statistics Dept. Colloquium

UNC Greensboro 2023/10/25

Nick Cook, Duke University

Based on joint works with Amir Dembo and Huy Tuan Pham.

Random graphs

$$\left(\mathcal{C}_{(i,j)}\right)_{i,j=1}^{i,j=1} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

In this talk, a graph G is a set of vertices $[n] = \{1, ..., n\}$ together with a set E of pairs $\{i, j\} \subset [n]$ called edges.

Write $G_{i,j}$ for the Boolean 0/1 variable that is 1 when $\{i,j\}$ is an edge in G.

A random graph is formed by choosing the edge set E in a random way. The $G_{i,j}$ are then $\binom{n}{2}$ (possibly correlated) Bernoulli random variables. In this talk n is large!

Why random graphs?

- Model large networks, statistical estimation for social networks
- Extremal graph theory (probabilistic method of Erdős)
- Mean field models for statistical physics, dynamical systems, constraint satisfaction problems, . . .

1

Random graph models

Erdős–Rényi graphs:

- * G(n,p): the edge variables $G_{i,j}$ are independent, $\mathbb{P}(G_{i,j}=1)=p$.
- \bullet $G_{n,m}$: Edge set is uniform random of size m.

Exponential random graph models (ERGMs): Graph G is chosen with probability proportional to $\exp(H(G))$ for some function ("Hamiltonian") H, e.g. the edge-triangle model $H(G) = \alpha e(G) + \beta N_{\Delta}(G)$, where

$$e(G) := \sum_{1 \leq i < j \leq n} G_{i,j} = \# \text{ edges}, \qquad N_{\Delta}(G) := \sum_{\{i,j,k\} \subset [n]} G_{i,j} G_{j,k} G_{i,k} = \# \text{ triangles}$$

Random *d*-regular graphs. Uniform random under constraint that every vertex has *d* neighbors. Expanders with high probability.

Random geometric graphs. Points $(X_i)_{i=1}^n$ sampled from a distribution/manifold in \mathbb{R}^d , connected if sufficiently close.

Preferential attachment models (Barabási–Albert). Dynamically generated. Power-law degree distribution, small-world phenomenon.

Source: The Opte Project

Edges and triangles in Erdős-Rényi graphs

Let ${\bf G}$ random graph from the Erdős–Rényi G(n,p) model. So $\mathbb{P}({\bf G}=G)=p^{e(G)}(1-p)^{\binom{n}{2}-e(G)}$. (Think of p as fixed for now.)

Consider first the random number of edges $e(\mathbf{G}) = \sum_{i < j} \mathbf{G}_{i,j}$.

- Binomial($\binom{n}{2}$, p) distribution
- Law of averages \Rightarrow $e(\mathbf{G})$ typically $\approx p\binom{n}{2}$.
- Central limit theorem (Laplace): $\frac{e(G) p\binom{n}{2}}{\sqrt{p(1-p)\binom{n}{2}}} \Rightarrow \text{Normal}$
- Large deviations (Laplace): for $q \in [0,1]$, $\log \mathbb{P}\Big(e(\mathbf{G}) \sim q\binom{n}{2}\Big) \sim -I_p(q)\binom{n}{2}$ where $I_p(q) = q\log \frac{q}{n} + (1-q)\log \frac{1-q}{1-n}$.

Now consider the number of triangles $N_{\Delta}(\mathbf{G}) = \sum_{\{i,j,k\} \subset [n]} G_{i,j} G_{j,k} G_{k,\ell}$.

- Cubic polynomial in $\binom{n}{2}$ Bernoulli variables. $\mathbb{E}[N_{\Delta}(\mathbf{G})] = p^{3}\binom{n}{3}$.
- LLN (exercise), CLT (Ruciński '88)
- Large deviations: The Infamous Upper Tail problem,
 a driving example for Nonlinear large deviations theory.
 - * Other examples: Eigenvalues of random matrices, k-term arithmetic progressions in random subsets of \mathbb{Z} .

The Infamous Upper Tail (Janson-Ruciński '02)

Problem A: Estimate $\mathbb{P}\{N_{\Delta}(\mathbf{G}) \geq (1+\delta)\mathbb{E}N_{\Delta}(\mathbf{G})\}\$ for fixed $\delta > 0$.

- Janson–Oleszkiewicz–Ruciński '04, Kim–Vu '04
- DeMarco–Kahn '11, Chatterjee '11: show $-\log \mathbb{P}\{N_{\Delta}(\mathbf{G}) \geq (1+\delta)\mathbb{E}N_{\Delta}(\mathbf{G})\} \asymp_{\delta} n^2 p^2 \log(1/p)$

Dependence on δ ?

- Dense case (p fixed): Chatterjee–Varadhan, Lubetzky–Zhao '11 (more on this soon)
- Sparse case: $\mathbb{P}\{N_{\Delta}(\mathbf{G}) \geq (1+\delta)\mathbb{E}N_{\Delta}(\mathbf{G})\} = p^{(1+o(1))c(\delta)n^2p^2}$ where $c(\delta) = \min\{\frac{\delta^{2/3}}{2}, \frac{\delta}{3}\}$, assuming $n^{-\kappa} \ll p \ll 1$ with $*\kappa = \frac{1}{41}$ [Chatterjee–Dembo '14] + [Lubetzky–Zhao '14] $*\kappa = \frac{1}{18}$ [Eldan '16] $*\kappa = \frac{1}{3}$ [C.–Dembo '18] $*\kappa = \frac{1}{2}$ [Augeri '18] $*\kappa = \frac{1}{2}$ [Augeri '18] $*\kappa = 1$ [Harel–Mousset–Samotij '19].

Also results on the upper tail for general F-counts with $\kappa = \kappa(F)$, formulas obtained by Bhattacharya–Ganguly–Lubetzky–Zhao '16.

The Infamous Upper Tail (Janson-Ruciński '02)

Problem B: Conditional on $\{N_{\Delta}(\mathbf{G}) \geq (1+\delta)\mathbb{E}N_{\Delta}(\mathbf{G})\}$, what does the graph look like? How are the edges distributed?

Three natural guesses:

- 1. Boost in edge density to $q = (1 + \delta)^{1/3} p$
- 2. Appearance of a clique of size $\sim \delta^{1/3} pn$
- 3. Appearance of a hub (biclique) of size $\sim \frac{1}{3}\delta p^2 n$.

Sparse case: For $n^{-1/2} \ll p \ll 1$, phase transition from hub to clique as δ crosses $\frac{27}{8}$. (LZ14, HMS19, C.–Dembo '22)

Dense case (p fixed): $\{N_{\Delta}(\mathbf{G}) \sim q^3 \binom{n}{3}\}$ for $p < q \le 1$.

- Large deviation principle (LDP) for the ER graph (Chatterjee-Varadhan '11)
- LDP optimization problem and characterization of the symmetric regime (Lubetzky–Zhao '12)
- Problem B still open in the symmetry breaking regime.

Graphs as functions (graphons)

A Large Deviation Principle (LDP) for a sequence of random elements X_n of a compact metric space $\mathcal X$ says for large n and small ε ,

$$\log \mathbb{P}(X_n \in B(x,\varepsilon)) \approx -r_n J(x)$$

for some speed r_n and rate function $J: \mathcal{X} \to \mathbb{R}^+$.

How can we view a sequence G_n of Erdős–Rényi graphs on [n] as elements of a single metric space?

We can identify any graph G over [n] with a symmetric step function $g(x,y)=G_{\lfloor xn\rfloor,\lfloor yn\rfloor}$ on the unit square $[0,1]^2$.

$$\left(G_{i,j}\right)_{i,j=1}^{i} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Embeds all finite graphs in the space $\mathcal W$ of symmetric functions $g:[0,1]^2 \to [0,1]$, equipped with a metric induced by the *cut norm* $\|f\|_{\square} = \sup_{S, \mathcal T \subset [0,1]} |\int_{S \times \mathcal T} f|$. This is **graphon space** (Lovász et al. '06–'10).

Large deviations in graphon space (Chattjeree-Varadhan '11)

Graphon space provides a topological reformulation of the classic regularity method from extremal graph theory.

Key fact 1: The space \mathcal{W} of graphons with cut-norm topology is compact (\approx Szemerédi's regularity lemma).

Theorem (Chatterjee-Varadhan)

For fixed $p \in (0,1)$, the sequence of Erdős–Rényi graphs $\{\mathbf{G}_n\}_{n \geq 1} \subset \mathcal{W}$ satisfies an LDP of speed n^2 , with rate function $J(g) = \int_{[0,1]^2} I_p(g(x,y)) dx dy$.

Key fact 2: The triangle-counting function $N_{\Delta}(\cdot)$ (or more generally the count of any fixed subgraph F) extends to a continuous function on \mathcal{W} . (\approx the counting lemma).

Corollary: Upper tails for subgraph counts (apply the LDP to super-level sets).

Moral: The cut-norm topology is the right topology if you're interested in subgraph counts (for dense graphs at least).

Large deviations for sparse graphs

Problem: for p = o(1), there is a **localization phenomenon**: main contribution to large deviations comes from a vanishing proportion of edges in a dense configuration (recall cliques and hubs).

These structures can occur at various scales are *invisible to the cut norm*. Related to challenges for developing (useful) sparse graph limit theories.

Quantitative approach: under some norm $\|\cdot\|_*$ on the set \mathcal{G}_n of graphs on [n],

- bound covering numbers (compactness)
- bound Lipschitz constants of F-count functions $N_F(G)$ (continuity)

<u>C.-Dembo '18</u>: used the spectral norm (applied to the adjacency matrix), covering \mathcal{G}_n with a net of low-rank matrices, together with a tiny "bad" set.

<u>C.-Dembo-Pham '21</u>: developed generalizations $\|\cdot\|_B$ of the cut-norm to the hypergraph setting. Decomposition of 0/1 tensors as $A=A_{struct}+A_{rand}$, where

- A_{struct} is a short linear combination of "structured" tensors of controlled size under || · ||_B, and
- the pseudorandom remainder A_{rand} is small under the dual norm $\|\cdot\|_B^*$.

Exponential random graph models (ERGMs)

Recall G_n is the set of graphs over vertex set $[n] = \{1, \ldots, n\}$.

An ERGM is a probability measure on \mathcal{G}_n with mass function of the form

$$\frac{1}{Z_n(\alpha,\beta)}e^{n^2\mathrm{H}(G;\beta)-\alpha\mathrm{e}(G)}$$

where $\alpha, \beta_1, \dots, \beta_m \in \mathbb{R}$ are the model parameters, $e(G) = \sum_{1 \leq i < j \leq n} G_{i,j}$, and

$$\mathrm{H}(G;oldsymbol{eta}) = \sum_{k=1}^m eta_k \mathrm{f}_k(G)$$

for a fixed collection of graph statistics $f_k(G)$. Common choice is the densities of some fixed graphs F_1, \ldots, F_m in G.

Ex. 1: Erdős–Rényi distribution. Taking $H \equiv 0$, $\alpha = \log \frac{1-\rho}{\rho}$ gives mass function $\rho^{e(G)}(1-\rho)^{\binom{n}{2}-e(G)}$.

Ex. 2: Edge-triangle model. $H(G; \beta) = \beta N_{\Delta}(G)/\binom{n}{3}$

9

ERGMs: Motivation and challenges

$$\frac{1}{Z_n(\alpha,\beta)} \exp\left(n^2 \sum_{k=1}^m \beta_k f_k(G) - \alpha e(G)\right)$$

- Introduced in the social sciences literature in the 80s–90s as parametric family of distributions for modeling social networks. [Frank & Strauss '86, Wasserman & Pattison '96].
- Want graphs with transitivity: friends of friends are more likely to be friends.
- The separable form of the Hamiltonian implies that the functions e, f_k are sufficient statistics for the model parameters α , β_k .
- Estimation of model parameters by MLE requires knowledge of the partition function $Z(\alpha, \beta)$, which is often done by sampling using local MCMC algorithms.

ERGMs: Motivation and challenges

$$\frac{1}{Z_n(\alpha,\beta)}\exp\left(n^2\sum_{k=1}^m\beta_kf_k(G)-\alpha\mathrm{e}(G)\right)$$

Many problems in practice [Strauss '86, Snijders '02, Handcock '02, '03].

- 1. No transitivity!
- 2. **Degeneracy**: typical samples are either nearly empty or nearly full (edge density \sim 0 or \sim 1).
- 3. Slow convergence of sampling algorithms in some parameter regimes

Bhamidi–Bressler–Sly '08: characterization of high/low-temperature regimes in "ferromagnetic" case $\beta_k > 0$ when $f_k(G)$ are subgraph densities.

- Low-temperature: Exponential convergence time for MCMC
- High-temperature: Polynomial convergence, but typical samples resemble Erdős–Rényi graphs (no transitivity!).

Chatterjee–Diaconis '12 (using **Chatterjee–Varadhan '11 LDP**) show ferromagnetic ERGMs are \approx mixtures of Erdős–Rényi graphs.

Typical structure of sparse ERGMs (C.-Dembo '22)

Consider distributions of the general form $\mathbb{P}(\mathbf{G} = G) \propto \exp(r_{n,p}H(G) - \alpha e(G))$,

$$\mathrm{H}(G) = h\left(\frac{t(F_1,G)}{p^{\mathrm{e}(F_1)}},\ldots,\frac{t(F_m,G)}{p^{\mathrm{e}(F_m)}}\right)$$

for a fixed continuous, non-decreasing $h: \mathbb{R}_+^m \to \mathbb{R}$, and graphs F_1, \ldots, F_m of max-degree $d \geq 2$, where $t(F_k, G)$ is the density of F_k in G.

Let $\mathcal{G}_n(a,b)$ be the set of G with an almost-clique I and an almost-hub J, for some $I,J\subset [n]$ of sizes $|I|\sim \sqrt{a}p^{d/2}n,\ |J|\sim bp^dn.$

We show under growth and decay conditions on h and p, with high probability, $\mathbf{G} \in \mathcal{G}_n(a,b)$ for some (a,b) in the set of optimizers for

$$\sup_{a,b\geq 0} \left\{ h(T_1(a,b),\ldots,T_m(a,b)) - \frac{1}{2}a - b \right\}$$

for some explicit functions T_k determined by F_k .

Conditional structure of sparse Erdős-Rényi graphs (C.-Dembo '22)

On the 2D manifold of "clique-hub" graphs (up to relabeling vertices), level sets of subgraph-counting functions (green/blue/yellow) and relative entropy (red) are \approx smooth curves.

Upper tail event is light-blue region.

Points (a, b) minimizing the entropy $\frac{1}{2}a + b$ are circled in red.

Here $\delta_3 = 100$ and (δ_1, δ_2) is A. (3, 24), B. (4, 25), C. (4, 31.5).

Example: (Tamed) Edge-Triangle Model

Let
$$H(G; \beta) = \beta \left(\frac{t(\Delta, G)}{\rho^3} - 1\right)_+^{1/3}$$
.

- 1. For fixed $\beta \in (0, \frac{16}{9})$, we have $\mathbf{G} \in \mathcal{G}_n(0, \frac{1}{3}\beta^{3/2})$ with high prob.
- 2. For fixed $\beta \in (\frac{16}{9}, \infty)$, we have $\mathbf{G} \in \mathcal{G}_n(\beta^2, 0)$ with high prob.

Example: Edge- K_3 - P_3 model

Directions for the future

- Taming growth of Hamiltonian has "cured" the worst form of degeneracy for ERGMs, but clique-hub graphs still don't look much like social networks. Might get richer structure from degree constraints, antiferromagnetic models, other statistics $f_k(G)$, ...
- In C.-Dembo-Pham '21 we get quantitative LDPs for random hypergraphs, but explicit upper-tail formulas are only known in a few cases, such as clique counts (Liu-Zhao '19)
- ERHMs?
- LDPs for random regular graphs: Bhattacharya—Dembo '19, Gunby '21.
 LDPs mostly open for:
 - * Random geometric graphs (Chatterjee-Harel '21),
 - * Random simplicial complexes (Samorodnitsky-Owada '22)

Thanks for your attention!