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The spectrum of Wigner matrices

Let H be an N × N normalized real sub-Gaussian Wigner matrix

i.e. real symmetric with Hij =
1√
N
Xij for {Xij}i≤j iid copies of a

standardized variable X with sub-Gaussian law µ.

Eigenvalues λN ≤ · · · ≤ λ1.

Semicircle law: The ESD µ̂H = 1
N

∑N
i=1 δλi concentrates around the semicircle

measure dσ(x) = 1
2π
(4− x2)

1/2
+ dx .

∗ Quantitative: P(|µ̂H(f )− σ(f )| > ε) ≲ exp(−cε2N2) for f convex,

1-Lipschitz if µ has bounded support [Guionnet–Zeitouni ’00].

∗ Fluctuations: Nµ̂H(f ) converges to a Gaussian for f smooth.

(Optimal condition f ∈ H1/2+ε [Landon–Sosoe ’22].)

∗ LDP for GOE case [Ben Arous–Guionnet ’97]:

− 1

N2
log P(µ̂H ∼ ν) ∼ I(ν)

= − 1
2

∫ ∫
log |x − y |dν(x)dν(y) + 1

4

∫
x2dν(x)− c .
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The spectrum of Wigner matrices

Let H be an N × N normalized real sub-Gaussian Wigner matrix

i.e. real symmetric with Hij =
1√
N
Xij for {Xij}i≤j iid copies of a

standardized variable X with sub-Gaussian law µ.

Eigenvalues λN ≤ · · · ≤ λ1.

Convergence at the edge: λ1 → 2 w.h.p. [Füredi–Komlós ’81].

∗ Quantitative: P(|λ1 − 2| > ε) ≲ exp(−cε2N) if µ has bounded support.

∗ Fluctuations: N2/3(λ1 − 2) ⇒ TW1. [Tracy–Widom, Forester ’94] (GOE),

[Soshnikov ’99]

∗ LDP for GOE case [Ben Arous–Dembo–Guionnet ’99]:

− 1

N
log P(λ1 ∼ x) ∼ Iγ(x) :=

 1
2

∫ x

2

√
y 2 − 4dy x ≥ 2

∞ x < 2.

P(λ1 ∼ 3) ≈ e−0.715N .
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A universal (!) LDP (Guionnet–Husson ’18)

For centered µ and Λµ(t) := log
∫
R etxdµ(x), µ is . . .

sub-Gaussian (SG) if Λµ(t) ≤ Kt2 ∀t ∈ R, constant K <∞

sharp sub-Gaussian (SSG) if Λµ(t) ≤ 1
2
t2 = Λγ(t) ∀t ∈ R

where γ(dx) = 1√
2π
e−x2/2dx . Ex: Rademacher, Unif[−

√
3,
√
3] are SSG.

Theorem (Guionnet–Husson ’18)

Assume µ is sharp sub-Gaussian. Then λ1 satisfies an LDP with speed N and

good rate function Iγ . In particular, for each fixed x ∈ R,

1

N
log P(|λ1 − x | ≤ δ) = −Iγ(x) + o(1).

(In this talk we write “o(1)” for errors going to zero after N → ∞ then δ ↓ 0.)

Strategy of tilting by spherical integrals since applied in many contexts:

A+ UBU∗, matrices with a variance profile, perturbed Wigner matrices,

generalized sample covariance matrices. [Guionnet–Mäıda, Husson,

Belinschi–Guionnet–Huang, McKenna, Biroli–Guionnet, Maillard, Husson–McKenna]

Question: How does the matrix “typically” achieve λ1 ∼ x ? 3



Non-universal LDPs for heavier-tailed/sparse matrices

For some matrices without uniformly sub-Gaussian entries, deviations of the

spectrum are due to localization phenomena – events involving o(N2) entries.

• Stretched-exponential tails: if − log P(|X | > t) ≍ tα for α ∈ (0, 2),

large deviations of µ̂H and of λ1 (at scale 1) are due to the appearance of

large entries [Bordenave–Caputo ’14], [Augeri ’16].

• Sparse Bernoulli(p) matrices: For the adjacency matrix A of Erdős–Rényi

graph G(N, p) with p = o(1), deviations of eigenvalues to scale Np,

or spectral moments TrAℓ at scale (Np)ℓ, are due to appearance of

“planted” low-rank structures corresponding to dense subgraphs with

Θ(N2p2) edges; or due to high-degree vertices.

[Bhattacharya–Ganguly–Lubetzky–Zhao ’16], [Augeri ’18], [C.–Dembo ’18],

[Bhattacharya–Ganguly ’18], [Bhattacharya–Bhattacharya–Ganguly ’20], [Basak

’21], [C.–Dembo ’22]

• Randomly weighted diluted networks: A⊙ Y with {Yij}i<j iid:

[Ganguly–Nam ’21], [Ganguly–Hiesmayr–Nam ’22], [Augeri–Basak ’23].
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Conditional structure of sparse Bernoulli matrices on tail events

For a, b ≥ 0, δ ∈ (0, 1) let Ea,b(δ) be the event that∑
i,j∈I

Ai,j ≥ (1− δ)|I |2 ,
∑

i∈J,j∈Jc

Ai,j ≥ (1− δ)|J|(N − |J|)

for some I , J ⊂ [N] with |I | ∼
√
apN, |J| ∼ bp2N.

Theorem (C.–Dembo ’22)

For N−1/3 ≪ p ≪ 1 and fixed ℓ1, . . . , ℓm ≥ 3, s1, . . . , sm > 0,

P
( ⋃

(a∗,b∗)∈O(ℓ,s)

Ea,b(δ)

∣∣∣∣ Tr(Aℓk ) ≥ (1 + sk)(Np)
ℓk , k = 1, . . . ,m

)
≥ 1− pcN2p2

for some c(ℓ, s, δ) > 0, where O(ℓ, s) is the set of minimizers for a

non-convex linear optimization problem determined by ℓ, s.

Special case of a result for any fixed collection of graphs. ⇒ Typical structure

of Exponential Random Graphs, extending [Chatterjee–Diaconis ’12].

Harel–Mousset–Samotij ’18: Case m = 1, ℓ1 = 3 (and general clique counts).
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Conditional structure of sparse Bernoulli matrices on tail events

For a, b ≥ 0, δ ∈ (0, 1) let Ea,b(δ) be the event that∑
i,j∈I

Ai,j ≥ (1− δ)|I |2 ,
∑

i∈J,j∈Jc

Ai,j ≥ (1− δ)|J|(N − |J|)

for some I , J ⊂ [N] with |I | ∼
√
apN, |J| ∼ bp2N.

Theorem (C.–Dembo ’22)

For N−1/3 ≪ p ≪ 1 and fixed ℓ1, . . . , ℓm ≥ 3, s1, . . . , sm > 0,

P
( ⋃

(a∗,b∗)∈O(ℓ,s)

Ea,b(δ)

∣∣∣∣ Tr(Aℓk ) ≥ (1 + sk)(Np)
ℓk , k = 1, . . . ,m

)
≥ 1− pcN2p2

for some c(ℓ, s, δ) > 0, where O(ℓ, s) is the set of minimizers for a

non-convex linear optimization problem determined by ℓ, s.

Proof combines quantitative LDPs for Erdős–Rényi (hyper)graphs

[C.–Dembo–Pham ’20] with stability analysis of the NMF approximation for the

upper tail studied in [Bhattacharya–Ganguly–Lubetzky–Zhao ’16].
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Conditional structure of sparse Bernoulli matrices on tail events

On the 2D manifold of “clique-hub” matrices (up to relabeling rows/columns),

level sets of subgraph-counting functions (green/blue/yellow) and relative

entropy (red) are ≈smooth curves. Upper tail event is light-blue region, set

O(F1,F2,F3, s1, s2, s3) of optimizers of entropy are circled in red.

Plotted for s3 = 100 and 3 choices of (s1, s2): A. (3, 24), B. (4, 25), C. (4, 31.5).
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General sub-Gaussian matrices: non-universal LDPs

Back to Wigner matrices, assume law µ of entries is general sub-Gaussian.

Building on strategy of Guionnet–Husson, [Augeri–Guionnet–Husson ’19] and

[C.–Ducatez–Guionnet ’23] show in many cases the existence of Iµ(x) such

that
1

N
log P(|λ1 − x | ≤ δ) = −Iµ(x) + o(1). (∗)

In particular:

• We always have Iµ(x) ≤ Iγ(x). (Deviations are at least as likely as in the

sharp sub-Gaussian case.)

• There exists xµ ∈ (2,∞] such that Iµ(x) = Iγ(x) for x < xµ.

• If ψµ(t) := Λµ(t)/t
2 is increasing or achieves its maximum at some finite

t∗ then (∗) holds for all x ∈ R.
• Main technical result of CDG23 gives a non-asymptotic approximation

1

N
log P(|λ1 − x | ≤ δ) ≈ −I(N)

µ (x)

in terms of an N-dependent optimization problem over restricted annealed

free energies for a spiked spherical SK model.
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Classical tilting: Cramér LDP

For the sample mean X = 1
N

∑N
i=1 Xi for iid Xi ∼ µ, we have

1

N
log P(|X − x | ≤ δ) = −Λ∗

µ(x) + o(1)

where Λ∗
µ(x) = supθ∈R{θx − Λµ(θ)}.

Proof: Defining a one-parameter family of tilted measures:

P(θ)(·) := e−NΛµ(θ)EeθNX
1(·) , θ ∈ R

we can reexpress

P(|X − x | ≤ δ) = e−N(θx+o(1)) EeθNX
1(|X − x | ≤ δ)

= eN(Λµ(θ)−θx+o(1)) P(θ)(|X − x | ≤ δ) .

Upper bound: trivially bound P(θ)(|X − x | ≤ δ) ≤ 1 and optimize θ.

Lower bound: show that for the optimizer θx , P(θx )(|X − x | ≤ δ) ≥ e−o(N).
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Tilting by spherical integrals (Guionnet–Husson ’18)

For N × N symmetric M, θ ≥ 0 and P the uniform surface measure on SN−1,

I (M, θ) :=

∫
SN−1

eθN⟨u,Mu⟩dP(u)

Quenched free energy. Guionnet–Maida ’05: on {λ1 ∼ x} ∩ {µ̂H ∼ σ},

1

N
log I (H, θ) ∼ J(x , θ) :=

{
θ2 θ ≤ 1

2
Gσ(x)

θx − 1
2

∫
log(x − λ)dσ(λ)− 1

2
log(2eθ) θ ≥ 1

2
Gσ(x)

where Gσ(x) =
1
2
(x −

√
x2 − 4) is the Stieltjes transform of σ at x ≥ 2.

Annealed free energy. FN(θ) :=
1
N
logEI (H, θ). By Fubini,

EI (H, θ) =
∫
SN−1

EeθN⟨u,Hu⟩dP(u) =

∫
SN−1

∏
i≤j

Ee2θ
√

NXijui uj dP(u)

=⇒ FN(θ) =
1

N
log

∫
SN−1

exp
(∑

i≤j

Λµ(2θ
√
Nuiuj)

)
dP(u) .

For µ SSG, show: (A) 1
N
log P(λ1 ∼ x) ∼ infθ≥0{FN(θ)− J(x , θ)},

and (B) FN(θ) → θ2. (Independent of µ!)

A computation gives infθ≥0{θ2 − J(x , θ)} = −Iγ(x). □ 10



Tilting by spherical integrals: Annealed − Quenched

Argument for (A) 1
N
log P(λ1 ∼ x) ∼ infθ≥0{FN(θ)− J(x , θ)}.

Use two levels of tilting: For θ ≥ 0, u ∈ SN−1, define measures

P(θ,u)(A) :=
EeθN⟨u,Hu⟩

1(A)

EeθN⟨u,Hu⟩ , on (Ω,F),

Q(θ)(B) :=

∫
B
EeθN⟨u,Hu⟩dP(u)∫

SN−1 EeθN⟨u,Hu⟩dP(u)
= e−NFN (θ)

∫
B

EeθN⟨u,Hu⟩dP(u) on SN−1.

With Ex := {λ1 ∼ x , µ̂H ∼ σ}, we have

P(Ex) = e−N(J(x,θ)+o(1))EI (H, θ)1(Ex)

= e−N(J(x,θ)+o(1))

∫
SN−1

EeθN⟨u,Hu⟩
1(Ex)dP(u)

= e−N(J(x,θ)+o(1))

∫
SN−1

P(θ,u)(Ex)EeθN⟨u,Hu⟩dP(u)

= eN(FN (θ)−J(x,θ)+o(1))

∫
SN−1

P(θ,u)(Ex) dQ
(θ)(u).

Upper bound: trivially bound P(θ,u)(Ex) ≤ 1 and optimize θ.
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Tilting by spherical integrals: Annealed − Quenched

Lower bound:

Showed P(Ex) = eN(FN (θ)−J(x,θ))+o(N)

∫
SN−1

P(θ,u)(Ex)dQ
(θ)(u)

where

Ex = {λ1 ∼ x , µ̂H ∼ σ} , dP(θ,u)

dP
∝ eθN⟨u,Hu⟩ ,

dQ(θ)

dP
(u) ∝ EeθN⟨u,Hu⟩.

With θx the optimizing choice of θ from the upper bound, only remains to

show {λ1 ∼ x} is likely under P(θx ,u), at least for all u in some D ⊂ SN−1

such that Q(θx )(D) ≥ e−o(N).

Take D = {u ∈ SN−1 : ∥u∥∞ ≤ N− 1
4
−ε} set of delocalized unit vectors. Then

(1) Q(θ)(D) ≥ e−o(N) (easy).

(2) For any u ∈ D, H
d
≈ 2θuuT + H̃ under P(θ,u) for a Wigner matrix H̃.

(Note that E(θ,u)Hij =
1√
N
Λ′
µ(2θ

√
Nuiuj) ∼ 2θuiuj .)

By the BBP transition we get λ1 ∼ x w.h.p. under P(θx ,u) for any u ∈ D.
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Tilting by spherical integrals: Universal annealed free energy

Now to show (B) FN(θ) :=
1
N
logEI (H, θ) → θ2,

FN(θ) =
1

N
log

∫
SN−1

exp
(∑

i≤j

Λµ(2θ
√
Nuiuj)

)
dP(u)

∼ 1

N
log

∫
D
exp

(∑
i≤j

Λµ(2θ
√
Nuiuj)

)
dP(u).

For u delocalized we can use the Taylor expansion Λµ(t) ∼ 1
2
t2 for t = o(1):

Λµ(2θ
√
Nuiuj) ∼

∑
i≤j

2θ2Nu2
i u

2
j ∼ θ2N.

Universality comes from expansion of Λµ near 0 (as for the CLT!).
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New ideas to capture localization

For µ SSG, showed: (A) 1
N
log P(λ1 ∼ x) ∼ supθ≥0{FN(θ)− J(x , θ)},

(B) FN(θ) → θ2.

Proof suggests that on {λ1 ∼ x}, H
d
≈ 2θuuT + H̃ for a random delocalized u.

When µ is not SSG, both (A) and (B) are false.

• Upper bound 1
N
log P(λ1 ∼ x) ≤ FN(θ)− J(x , θ) + o(1) still true, but not

always sharp [AGH19].

• No longer true that FN(θ) ∼ θ2. Contribution of u ∈ SN−1 with large

entries carries too much weight – D no longer typical under Q(θ).

• For u not delocalized, no longer true that H
d
≈ 2θuuT + H̃ under P(θ,u).

Can’t do a BBP computation!

What is happening? Heavier tails open up non-universal localization strategies

that compete with delocalized tilt.

In fact, large deviations of λ1 result from a combination of the two!

Localization will be reflected by large entries of the associated eigenvector v1.

So we do a spherical integral tilt with a fixed choice of large entries, then

optimize them at the end (there are o(N) of them).
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New ideas to capture localization

Let Lη be the set of N1−2η-sparse vectors in the ball BN . For z ∈ Lη we let

Uz :=
{
u ∈ SN−1 : ularge ≈ z , ∥u|supp(z)c ∥∞ ≤ Nη−1/2

}
and denote the restricted annealed free energy

FN(θ; z) :=
1

N
logE

∫
Uz

eθN⟨u,Hu⟩dP(u).

Theorem (C.–Ducatez–Guionnet ’23)

(With technical conditions) If η is a sufficiently small constant, for any x ≥ 2,

1

N
log P(|λ1 − x | ≤ δ) = sup

w∈Lη

inf
θ≥0

{
FN

(
θ; qx(θ)w

)
− J(x , θ)

}
+ o(1)

where qx(θ) := (1− Gσ(x)
2θ

)
1/2
+ .

Note U0 = D so FN(θ; 0) ∼ θ2, and RHS is bounded below by −Iγ(x) + o(1).

For x < xµ the supremum is in fact attained at w = 0, giving Iµ(x) = Iγ(x).
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New ideas to capture localization

Recall

FN(θ; z) =
1

N
logE

∫
Uz

eθN⟨u,Hu⟩dP(u) =
1

N
log

∫
Uz

e
∑

i≤j Λµ(2θ
√
Nui uj )dP(u).

Theorem (C.–Ducatez–Guionnet ’23)

For any z ∈ Lη, and θ ≥ 0,

FN(θ; z) = φdel(θ, z) + φloc
N (θ, z) + φcross

N (θ, z) + Oθ(N
−η/2)

where

φdel(θ, z) := θ2(1− ∥z∥22)2 , φloc
N (θ, z) :=

1

N

∑
i≤j

Λµ(θ
√
Nzizj)

φcross
N (θ, z) := sup

ν∈P([−Nη,Nη ]) :∫
s2dν(s)=1−∥z∥22

{∫ N∑
i=1

Λµ(2θzi s)dν(s)− H(ν|γ)
}
− 1

2
∥z∥22 .
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Case of ψµ increasing

For e.g. sparse Gaussian entries, ψµ(t) = Λµ(t)/t
2 is increasing as |t| → ∞.

In this case we can show

FN(θ; z) ≤ FN(θ; ∥z∥2e1) + o(1)

for any z ∈ BN . Then we obtain

Theorem (C.–Ducatez–Guionnet ’23)

Assume ψµ(t) is increasing as |t| → ∞. Then λ1 satisfies a full large

deviation principle with speed N and good rate function Iµ which is infinite

on (−∞, 2) and is otherwise given by

Iµ(x) = inf
α∈[0,1]

sup
θ≥0

{
J(x , θ) +

1

2
αqx(θ)

2 − ψ∞α
2θ2qx(θ)

4 − θ2(1− αqx(θ)
2)2

− sup
ν∈P(R)∫

x2dν(x)=1−α

{∫
Λµ(2αθqx(θ)

2s)dν(s)− H(ν|γ)
}}

.

Moreover, on {λ1 ∼ x}, v1 has a coordinate of size Ω(1).
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New ideas to capture localization

With Ex,w = {λ1 ∼ x , v large
1 ∼ w}, we can show

P(Ex,w ) = eN(FN (θ;qx (θ)w)−J(x,θ)+o(1))

∫
Uqx (θ)w

P(θ,u)(λ1 ∼ x) dQ(θ,qx (θ)w)(u)

where dP(θ,u)
dP ∝ eθN⟨u,Hu⟩ as before, and we take dQ(θ,qw)

dP
∝ 1UqwEeθN⟨u,Hu⟩.

Upper bound: trivially bound the integral by 1, optimize θ, worst case w .

Lower bound: task is to show the integral is ≥ e−o(N) for some θ = θx,w .

Problem: As u ∈ Uqx (θ)w are not delocalized, we can’t compute E(θ,u)λ1 by a

BBP computation as before.

Solution: Can show λ1 concentrates under P(θ,u), with mean ≈ continuous in θ

and u (under the ℓ2 metric). E(θ,u)λ1 ∼ 2 for small θ, E(θ,u)λ1 → ∞ as θ → ∞.

Moreover, we can show the measures Q(θ,qw) concentrate on a small ball in the

2-Wasserstein metric, with center vθ,w ∈ SN−1 that varies continuously with θ.

Intermediate Value Theorem yields θ = θx,w such that E(θ,vθ,w )λ1 ∼ x .
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Thanks for your attention!
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