Large deviations for the largest eigenvalue of sub-Gaussian Wigner matrices

High Dimensional Statistics and Random Matrices

Île de Porquerolles

2023/06/14

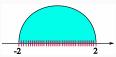
Nick Cook, Duke University

Based on joint works with Raphaël Ducatez, Alice Guionnet and Amir Dembo

The spectrum of Wigner matrices

Let H be an $N \times N$ normalized real sub-Gaussian Wigner matrix i.e. real symmetric with $H_{ij} = \frac{1}{\sqrt{N}} X_{ij}$ for $\{X_{ij}\}_{i \leq j}$ iid copies of a standardized variable X with sub-Gaussian law μ .

Eigenvalues $\lambda_N \leq \cdots \leq \lambda_1$.



Semicircle law: The ESD $\hat{\mu}_H = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ concentrates around the semicircle measure $d\sigma(x) = \frac{1}{2\pi} (4 - x^2)_+^{1/2} dx$.

- * Quantitative: $\mathbb{P}(|\hat{\mu}_H(f) \sigma(f)| > \varepsilon) \lesssim \exp(-c\varepsilon^2 N^2)$ for f convex, 1-Lipschitz if μ has bounded support [Guionnet–Zeitouni '00].
- * Fluctuations: $N\hat{\mu}_H(f)$ converges to a Gaussian for f smooth. (Optimal condition $f \in H^{1/2+\varepsilon}$ [Landon–Sosoe '22].)
- * LDP for GOE case [Ben Arous-Guionnet '97]:

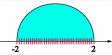
$$-rac{1}{\mathit{N}^2}\log\mathbb{P}(\hat{\mu}_H\sim
u)~\sim~\mathcal{I}(
u)$$

$$= -\frac{1}{2} \iint \log |x - y| d\nu(x) d\nu(y) + \frac{1}{4} \int x^2 d\nu(x) - c.$$

The spectrum of Wigner matrices

Let H be an $N \times N$ normalized real sub-Gaussian Wigner matrix i.e. real symmetric with $H_{ij} = \frac{1}{\sqrt{N}} X_{ij}$ for $\{X_{ij}\}_{i \leq j}$ iid copies of a standardized variable X with sub-Gaussian law μ .

Eigenvalues $\lambda_N \leq \cdots \leq \lambda_1$.



Convergence at the edge: $\lambda_1 \rightarrow 2$ w.h.p. [Füredi–Komlós '81].

- * Quantitative: $\mathbb{P}(|\lambda_1 2| > \varepsilon) \lesssim \exp(-c\varepsilon^2 N)$ if μ has bounded support.
- * <u>Fluctuations:</u> $N^{2/3}(\lambda_1 2) \Rightarrow TW_1$. [Tracy–Widom, Forester '94] (GOE), [Soshnikov '99]
- * LDP for GOE case [Ben Arous–Dembo–Guionnet '99]:

$$-\frac{1}{N}\log \mathbb{P}(\lambda_1 \sim x) \sim \mathcal{I}_{\gamma}(x) := \begin{cases} \frac{1}{2} \int_2^x \sqrt{y^2 - 4} dy & x \geq 2\\ \infty & x < 2. \end{cases}$$



 $\mathbb{P}(\lambda_1 \sim 3) \approx e^{-0.715N}$.

A universal (!) LDP (Guionnet-Husson '18)

For centered μ and $\Lambda_{\mu}(t) := \log \int_{\mathbb{R}} e^{tx} d\mu(x)$, μ is . . .

where $\gamma(dx) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. Ex: Rademacher, Unif $[-\sqrt{3}, \sqrt{3}]$ are SSG.

Theorem (Guionnet-Husson '18)

Assume μ is sharp sub-Gaussian. Then λ_1 satisfies an LDP with speed N and good rate function \mathcal{I}_{γ} . In particular, for each fixed $x \in \mathbb{R}$,

$$\frac{1}{N}\log \mathbb{P}(|\lambda_1 - x| \le \delta) = -\mathcal{I}_{\gamma}(x) + o(1).$$

(In this talk we write "o(1)" for errors going to zero after $N \to \infty$ then $\delta \downarrow 0$.)

Strategy of tilting by spherical integrals since applied in many contexts: $A + UBU^*$, matrices with a variance profile, perturbed Wigner matrices, generalized sample covariance matrices. [Guionnet–Maïda, Husson, Belinschi–Guionnet–Huang, McKenna, Biroli–Guionnet, Maillard, Husson–McKenna]

Question: How does the matrix "typically" achieve $\lambda_1 \sim x$?

Non-universal LDPs for heavier-tailed/sparse matrices

For some matrices without uniformly sub-Gaussian entries, deviations of the spectrum are due to localization phenomena – events involving $o(N^2)$ entries.

- Stretched-exponential tails: if $-\log \mathbb{P}(|X| > t) \approx t^{\alpha}$ for $\alpha \in (0,2)$, large deviations of $\hat{\mu}_H$ and of λ_1 (at scale 1) are due to the appearance of large entries [Bordenave–Caputo '14], [Augeri '16].
- Sparse Bernoulli(p) matrices: For the adjacency matrix A of Erdős–Rényi graph G(N,p) with p=o(1), deviations of eigenvalues to scale Np, or spectral moments $\operatorname{Tr} A^\ell$ at scale $(Np)^\ell$, are due to appearance of "planted" low-rank structures corresponding to dense subgraphs with $\Theta(N^2p^2)$ edges; or due to high-degree vertices. [Bhattacharya–Ganguly–Lubetzky–Zhao '16], [Augeri '18], [C.–Dembo '18], [Bhattacharya–Ganguly '20], [Basak '21], [C.–Dembo '22]
- Randomly weighted diluted networks: $A \odot Y$ with $\{Y_{ij}\}_{i < j}$ iid: [Ganguly–Nam '21], [Ganguly–Hiesmayr–Nam '22], [Augeri–Basak '23].

Conditional structure of sparse Bernoulli matrices on tail events

For $a, b \geq 0$, $\delta \in (0,1)$ let $\mathcal{E}_{a,b}(\delta)$ be the event that

$$\sum_{i,j\in I} A_{i,j} \geq (1-\delta) |I|^2, \qquad \sum_{i\in J, j\in J^c} A_{i,j} \geq (1-\delta) |J| (N-|J|)$$

I J

for some $I, J \subset [N]$ with $|I| \sim \sqrt{apN}$, $|J| \sim bp^2N$.

Theorem (C.-Dembo '22)

For $N^{-1/3} \ll p \ll 1$ and fixed $\ell_1, \ldots, \ell_m \geq 3$, $s_1, \ldots, s_m > 0$,

$$\mathbb{P}\bigg(\bigcup_{(a_*,b_*)\in\mathcal{O}(\underline{\ell},\underline{s})} \mathcal{E}_{a,b}(\delta) \,\bigg|\, \operatorname{Tr}(A^{\ell_k}) \geq (1+s_k)(\textit{Np})^{\ell_k}\,,\, k=1,\ldots,m\bigg) \geq 1-p^{cN^2\rho^2}$$

for some $c(\underline{\ell},\underline{s},\delta) > 0$, where $\mathcal{O}(\underline{\ell},\underline{s})$ is the set of minimizers for a non-convex linear optimization problem determined by $\underline{\ell},\underline{s}$.

Special case of a result for any fixed collection of graphs. \Rightarrow Typical structure of Exponential Random Graphs, extending [Chatterjee–Diaconis '12].

Harel–Mousset–Samotij '18: Case $m=1, \ell_1=3$ (and general clique counts).

Conditional structure of sparse Bernoulli matrices on tail events

For $a, b \geq 0$, $\delta \in (0,1)$ let $\mathcal{E}_{a,b}(\delta)$ be the event that

$$\sum_{i,j\in I} A_{i,j} \geq (1-\delta) |I|^2, \qquad \sum_{i\in J, j\in J^c} A_{i,j} \geq (1-\delta) |J| (N-|J|)$$

J

for some $I, J \subset [N]$ with $|I| \sim \sqrt{apN}$, $|J| \sim bp^2 N$.

Theorem (C.-Dembo '22)

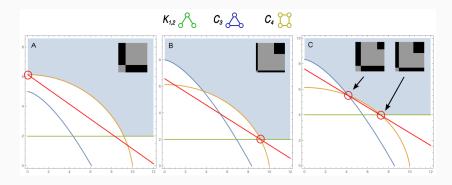
For $N^{-1/3} \ll p \ll 1$ and fixed $\ell_1, \ldots, \ell_m \geq 3$, $s_1, \ldots, s_m > 0$,

$$\mathbb{P}\bigg(\bigcup_{(a_*,b_*)\in\mathcal{O}(\underline{\ell},\underline{s})} \mathcal{E}_{a,b}(\delta) \,\bigg|\, \operatorname{Tr}(A^{\ell_k}) \geq (1+s_k)(\textit{Np})^{\ell_k}\,,\, k=1,\ldots,m\bigg) \geq 1-p^{cN^2\rho^2}$$

for some $c(\underline{\ell},\underline{s},\delta) > 0$, where $\mathcal{O}(\underline{\ell},\underline{s})$ is the set of minimizers for a non-convex linear optimization problem determined by $\underline{\ell},\underline{s}$.

Proof combines quantitative LDPs for Erdős–Rényi (hyper)graphs [C.–Dembo–Pham '20] with stability analysis of the NMF approximation for the upper tail studied in [Bhattacharya–Ganguly–Lubetzky–Zhao '16].

Conditional structure of sparse Bernoulli matrices on tail events



On the 2D manifold of "clique-hub" matrices (up to relabeling rows/columns), level sets of subgraph-counting functions (green/blue/yellow) and relative entropy (red) are \approx smooth curves. Upper tail event is light-blue region, set $\mathcal{O}(F_1, F_2, F_3, s_1, s_2, s_3)$ of optimizers of entropy are circled in red.

Plotted for $s_3 = 100$ and 3 choices of (s_1, s_2) : A. (3, 24), B. (4, 25), C. (4, 31.5).

General sub-Gaussian matrices: non-universal LDPs

Back to Wigner matrices, assume law μ of entries is general sub-Gaussian.

Building on strategy of Guionnet–Husson, [Augeri–Guionnet–Husson '19] and [C.–Ducatez–Guionnet '23] show in many cases the existence of $\mathcal{I}_{\mu}(x)$ such that

$$\frac{1}{N}\log \mathbb{P}(|\lambda_1 - x| \le \delta) = -\mathcal{I}_{\mu}(x) + o(1). \tag{*}$$

In particular:

- We always have $\mathcal{I}_{\mu}(x) \leq \mathcal{I}_{\gamma}(x)$. (Deviations are at least as likely as in the sharp sub-Gaussian case.)
- There exists $x_{\mu} \in (2, \infty]$ such that $\mathcal{I}_{\mu}(x) = \mathcal{I}_{\gamma}(x)$ for $x < x_{\mu}$.
- If $\psi_{\mu}(t) := \Lambda_{\mu}(t)/t^2$ is increasing or achieves its maximum at some finite t_* then (*) holds for all $x \in \mathbb{R}$.
- Main technical result of CDG23 gives a non-asymptotic approximation

$$\frac{1}{N}\log \mathbb{P}(|\lambda_1 - x| \leq \delta) \approx -\mathcal{I}_{\mu}^{(N)}(x)$$

in terms of an *N*-dependent optimization problem over *restricted annealed* free energies for a spiked spherical SK model.

Classical tilting: Cramér LDP

For the sample mean $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ for iid $X_i \sim \mu$, we have

$$\frac{1}{N}\log \mathbb{P}(|\overline{X} - x| \le \delta) = -\Lambda_{\mu}^*(x) + o(1)$$

where $\Lambda_{\mu}^*(x) = \sup_{\theta \in \mathbb{R}} \{\theta x - \Lambda_{\mu}(\theta)\}.$

Proof: Defining a one-parameter family of tilted measures:

$$\mathbb{P}^{(\theta)}(\cdot) := e^{-N\Lambda_{\mu}(\theta)} \mathbb{E} e^{\theta N \overline{X}} \, \mathbb{1}(\cdot) \,, \qquad \theta \in \mathbb{R}$$

we can reexpress

$$\begin{split} \mathbb{P}(|\overline{X} - x| \leq \delta) &= e^{-N(\theta x + o(1))} \, \mathbb{E}e^{\theta N \overline{X}} \, \mathbb{1}(|\overline{X} - x| \leq \delta) \\ &= e^{N(\Lambda_{\mu}(\theta) - \theta x + o(1))} \, \mathbb{P}^{(\theta)}(|\overline{X} - x| \leq \delta) \, . \end{split}$$

Upper bound: trivially bound $\mathbb{P}^{(\theta)}(|\overline{X} - x| \leq \delta) \leq 1$ and optimize θ .

<u>Lower bound:</u> show that for the optimizer θ_x , $\mathbb{P}^{(\theta_x)}(|\overline{X} - x| \leq \delta) \geq e^{-o(N)}$.

9

Tilting by spherical integrals (Guionnet–Husson '18)

For $N \times N$ symmetric M, $\theta \ge 0$ and P the uniform surface measure on \mathbb{S}^{N-1} ,

$$I(M,\theta) := \int_{\mathbb{S}N-1} e^{\theta N \langle u, Mu \rangle} dP(u)$$

Quenched free energy. Guionnet–Maida '05: on $\{\lambda_1 \sim x\} \cap \{\hat{\mu}_H \sim \sigma\}$,

$$\frac{1}{N}\log I(H,\theta) \sim J(x,\theta) := \begin{cases} \theta^2 & \theta \leq \frac{1}{2}G_{\sigma}(x) \\ \theta x - \frac{1}{2}\int \log(x-\lambda)d\sigma(\lambda) - \frac{1}{2}\log(2e\theta) & \theta \geq \frac{1}{2}G_{\sigma}(x) \end{cases}$$

where $G_{\sigma}(x) = \frac{1}{2}(x - \sqrt{x^2 - 4})$ is the Stieltjes transform of σ at $x \ge 2$.

Annealed free energy. $F_N(\theta) := \frac{1}{N} \log \mathbb{E}I(H, \theta)$. By Fubini,

$$\begin{split} \mathbb{E}I(H,\theta) &= \int_{\mathbb{S}^{N-1}} \mathbb{E}e^{\theta N \langle u, Hu \rangle} dP(u) = \int_{\mathbb{S}^{N-1}} \prod_{i \leq j} \mathbb{E}e^{2\theta \sqrt{N} X_{ij} u_i u_j} dP(u) \\ \Longrightarrow & F_N(\theta) = \frac{1}{N} \log \int_{\mathbb{S}^{N-1}} \exp \Big(\sum_{i < j} \Lambda_{\mu} (2\theta \sqrt{N} u_i u_j) \Big) dP(u) \,. \end{split}$$

For
$$\mu$$
 SSG, show: (A) $\frac{1}{N} \log \mathbb{P}(\lambda_1 \sim x) \sim \inf_{\theta \geq 0} \{F_N(\theta) - J(x, \theta)\},$ and (B) $F_N(\theta) \rightarrow \theta^2$. (Independent of μ !)

A computation gives $\inf_{\theta>0}\{\theta^2-J(x,\theta)\}=-\mathcal{I}_{\gamma}(x)$. \square

Tilting by spherical integrals: Annealed – Quenched

Argument for (A) $\frac{1}{N} \log \mathbb{P}(\lambda_1 \sim x) \sim \inf_{\theta \geq 0} \{F_N(\theta) - J(x, \theta)\}.$

Use two levels of tilting: For $\theta \geq 0$, $u \in \mathbb{S}^{N-1}$, define measures

$$\begin{split} \mathbb{P}^{(\theta,u)}(A) &:= \frac{\mathbb{E} e^{\theta N \langle u, Hu \rangle} \; \mathbb{1}(A)}{\mathbb{E} e^{\theta N \langle u, Hu \rangle}} \,, & \text{on } (\Omega, \mathcal{F}), \\ Q^{(\theta)}(B) &:= \frac{\int_{B} \mathbb{E} e^{\theta N \langle u, Hu \rangle} dP(u)}{\int_{\mathbb{S}^{N-1}} \mathbb{E} e^{\theta N \langle u, Hu \rangle} dP(u)} = e^{-NF_N(\theta)} \int_{B} \mathbb{E} e^{\theta N \langle u, Hu \rangle} dP(u) & \text{on } \mathbb{S}^{N-1}. \end{split}$$

With $\mathcal{E}_x := \{\lambda_1 \sim x, \hat{\mu}_H \sim \sigma\}$, we have

$$\begin{split} \mathbb{P}(\mathcal{E}_{x}) &= e^{-N(J(x,\theta)+o(1))} \mathbb{E}I(H,\theta) \, \mathbb{1}(\mathcal{E}_{x}) \\ &= e^{-N(J(x,\theta)+o(1))} \int_{\mathbb{S}^{N-1}} \mathbb{E}e^{\theta N\langle u, Hu \rangle} \, \mathbb{1}(\mathcal{E}_{x}) dP(u) \\ &= e^{-N(J(x,\theta)+o(1))} \int_{\mathbb{S}^{N-1}} \mathbb{P}^{(\theta,u)}(\mathcal{E}_{x}) \, \mathbb{E}e^{\theta N\langle u, Hu \rangle} dP(u) \\ &= e^{N(F_{N}(\theta)-J(x,\theta)+o(1))} \int_{\mathbb{S}^{N-1}} \mathbb{P}^{(\theta,u)}(\mathcal{E}_{x}) dQ^{(\theta)}(u). \end{split}$$

Upper bound: trivially bound $\mathbb{P}^{(\theta,u)}(\mathcal{E}_x) \leq 1$ and optimize θ .

Tilting by spherical integrals: Annealed — Quenched

Lower bound:

Showed
$$\mathbb{P}(\mathcal{E}_x) = e^{N(F_N(\theta) - J(x,\theta)) + o(N)} \int_{\mathbb{S}^{N-1}} \mathbb{P}^{(\theta,u)}(\mathcal{E}_x) dQ^{(\theta)}(u)$$

where

$$\mathcal{E}_{x} = \left\{\lambda_{1} \sim x, \hat{\mu}_{H} \sim \sigma\right\}, \qquad \frac{d\mathbb{P}^{(\theta,u)}}{d\mathbb{P}} \propto e^{\theta N \langle u, Hu \rangle}\,, \qquad \frac{dQ^{(\theta)}}{dP}(u) \propto \mathbb{E}e^{\theta N \langle u, Hu \rangle}.$$

With θ_x the optimizing choice of θ from the upper bound, only remains to show $\{\lambda_1 \sim x\}$ is likely under $\mathbb{P}^{(\theta_x,u)}$, at least for all u in some $\mathcal{D} \subset \mathbb{S}^{N-1}$ such that $Q^{(\theta_x)}(\mathcal{D}) \geq e^{-o(N)}$.

Take $\mathcal{D} = \{u \in \mathbb{S}^{N-1} : \|u\|_{\infty} \leq N^{-\frac{1}{4}-\varepsilon}\}$ set of delocalized unit vectors. Then

- (1) $Q^{(\theta)}(\mathcal{D}) \geq e^{-o(N)}$ (easy).
- (2) For any $u \in \mathcal{D}$, $H \stackrel{d}{\approx} 2\theta u u^{\mathsf{T}} + \widetilde{H}$ under $\mathbb{P}^{(\theta,u)}$ for a Wigner matrix \widetilde{H} .

(Note that
$$\mathbb{E}^{(\theta,u)}H_{ij}=rac{1}{\sqrt{N}}\Lambda'_{\mu}(2 heta\sqrt{N}u_iu_j)\sim 2 heta u_iu_j$$
.)

By the BBP transition we get $\lambda_1 \sim x$ w.h.p. under $\mathbb{P}^{(\theta_x,u)}$ for any $u \in \mathcal{D}$.

Tilting by spherical integrals: Universal annealed free energy

Now to show (B) $F_N(\theta) := \frac{1}{N} \log \mathbb{E}I(H, \theta) \to \theta^2$,

$$F_N(\theta) = rac{1}{N} \log \int_{\mathbb{S}^{N-1}} \exp \Big(\sum_{i \leq j} \Lambda_{\mu} (2\theta \sqrt{N} u_i u_j) \Big) dP(u)$$

 $\sim rac{1}{N} \log \int_{\mathcal{D}} \exp \Big(\sum_{i \leq j} \Lambda_{\mu} (2\theta \sqrt{N} u_i u_j) \Big) dP(u).$

For u delocalized we can use the Taylor expansion $\Lambda_{\mu}(t)\sim \frac{1}{2}t^2$ for t=o(1):

$$\Lambda_{\mu}(2\theta\sqrt{N}u_iu_j) \sim \sum_{i\leq j} 2\theta^2 Nu_i^2 u_j^2 \sim \theta^2 N.$$

Universality comes from expansion of Λ_{μ} near 0 (as for the CLT!).

For
$$\mu$$
 SSG, showed: (A) $\frac{1}{N} \log \mathbb{P}(\lambda_1 \sim x) \sim \sup_{\theta \geq 0} \{F_N(\theta) - J(x, \theta)\},$ (B) $F_N(\theta) \rightarrow \theta^2$.

Proof suggests that on $\{\lambda_1 \sim x\}$, $H \stackrel{\scriptscriptstyle d}{pprox} 2\theta u u^{\mathsf{T}} + \widetilde{H}$ for a random delocalized u.

When μ is not SSG, both (A) and (B) are false.

- Upper bound $\frac{1}{N} \log \mathbb{P}(\lambda_1 \sim x) \leq F_N(\theta) J(x, \theta) + o(1)$ still true, but not always sharp [AGH19].
- No longer true that $F_N(\theta) \sim \theta^2$. Contribution of $u \in \mathbb{S}^{N-1}$ with large entries carries too much weight $-\mathcal{D}$ no longer typical under $Q^{(\theta)}$.
- For u not delocalized, no longer true that $H \stackrel{d}{\approx} 2\theta u u^{\mathsf{T}} + \widetilde{H}$ under $\mathbb{P}^{(\theta,u)}$. Can't do a BBP computation!

What is happening? Heavier tails open up non-universal localization strategies that compete with delocalized tilt.

In fact, large deviations of λ_1 result from a combination of the two!

Localization will be reflected by large entries of the associated eigenvector v_1 . So we do a spherical integral tilt with a fixed choice of large entries, then optimize them at the end (there are o(N) of them).

Let \mathcal{L}_{η} be the set of $N^{1-2\eta}$ -sparse vectors in the ball \mathbb{B}^N . For $z \in \mathcal{L}_{\eta}$ we let

$$\mathcal{U}_{z} := \left\{ u \in \mathbb{S}^{N-1} : u^{large} pprox z, \ \|u|_{\mathsf{supp}(z)^c}\|_{\infty} \leq N^{\eta - 1/2}
ight\}$$

and denote the restricted annealed free energy

$$F_N(\theta;z) := \frac{1}{N} \log \mathbb{E} \int_{\mathcal{U}_z} e^{\theta N \langle u, Hu \rangle} dP(u).$$

Theorem (C.-Ducatez-Guionnet '23)

(With technical conditions) If η is a sufficiently small constant, for any $x \ge 2$,

$$\frac{1}{N}\log \mathbb{P}(|\lambda_1 - x| \le \delta) = \sup_{w \in \mathcal{L}_{\eta}} \inf_{\theta \ge 0} \left\{ F_N(\theta; q_x(\theta)w) - J(x, \theta) \right\} + o(1)$$

where
$$q_{x}(\theta) := (1 - \frac{G_{\sigma}(x)}{2\theta})_{+}^{1/2}$$
.

Note $\mathcal{U}_0 = \mathcal{D}$ so $F_N(\theta; 0) \sim \theta^2$, and RHS is bounded below by $-\mathcal{I}_{\gamma}(x) + o(1)$. For $x < x_{\mu}$ the supremum is in fact attained at w = 0, giving $\mathcal{I}_{\mu}(x) = \mathcal{I}_{\gamma}(x)$.

Recall

$$F_N(\theta;z) = \frac{1}{N} \log \mathbb{E} \int_{\mathcal{U}_z} e^{\theta N \langle u, Hu \rangle} dP(u) = \frac{1}{N} \log \int_{\mathcal{U}_z} e^{\sum_{i \leq j} \Lambda_{\mu}(2\theta \sqrt{N} u_i u_j)} dP(u).$$

Theorem (C.-Ducatez-Guionnet '23)

For any $z \in \mathcal{L}_{\eta}$, and $\theta \geq 0$,

$$F_N(\theta; z) = \varphi^{del}(\theta, z) + \varphi_N^{loc}(\theta, z) + \varphi_N^{cross}(\theta, z) + O_{\theta}(N^{-\eta/2})$$

where

$$arphi^{del}(heta,z) := heta^2 (1-\|z\|_2^2)^2\,, \qquad \qquad arphi^{loc}_N(heta,z) := rac{1}{N} \sum_{i \leq j} \Lambda_\mu(heta \sqrt{N} z_i z_j)$$

$$\varphi_N^{\mathsf{cross}}(\theta,z) := \sup_{\substack{\nu \in \mathcal{P}([-N^\eta,N^\eta]):\\ \int s^2 d\nu(s) = 1 - \|z\|_2^2}} \bigg\{ \int \sum_{i=1}^N \Lambda_\mu(2\theta z_i s) d\nu(s) - \mathsf{H}(\nu|\gamma) \bigg\} - \frac{1}{2} \|z\|_2^2 \,.$$

Case of ψ_{μ} increasing

For e.g. sparse Gaussian entries, $\psi_{\mu}(t)=\Lambda_{\mu}(t)/t^2$ is increasing as $|t|\to\infty$. In this case we can show

$$F_N(\theta;z) \le F_N(\theta; \|z\|_2 e_1) + o(1)$$

for any $z \in \mathbb{B}^N$. Then we obtain

Theorem (C.-Ducatez-Guionnet '23)

Assume $\psi_{\mu}(t)$ is increasing as $|t| \to \infty$. Then λ_1 satisfies a full large deviation principle with speed N and good rate function \mathcal{I}_{μ} which is infinite on $(-\infty,2)$ and is otherwise given by

$$\begin{split} \mathcal{I}_{\mu}(x) &= \inf_{\alpha \in [0,1]} \sup_{\theta \geq 0} \left\{ J(x,\theta) + \frac{1}{2} \alpha q_x(\theta)^2 - \psi_{\infty} \alpha^2 \theta^2 q_x(\theta)^4 - \theta^2 (1 - \alpha q_x(\theta)^2)^2 \right. \\ &\left. - \sup_{\substack{\nu \in \mathcal{P}(\mathbb{R}) \\ \int x^2 d\nu(x) = 1 - \alpha}} \left\{ \int \Lambda_{\mu} (2\alpha \theta q_x(\theta)^2 s) d\nu(s) - \mathsf{H}(\nu|\gamma) \right\} \right\}. \end{split}$$

Moreover, on $\{\lambda_1 \sim x\}$, v_1 has a coordinate of size $\Omega(1)$.

With $\mathcal{E}_{x,w} = \{\lambda_1 \sim x, v_1^{large} \sim w\}$, we can show

$$\mathbb{P}(\mathcal{E}_{x,w}) = e^{N(F_N(\theta;q_x(\theta)w) - J(x,\theta) + o(1))} \int_{\mathcal{U}_{q_x(\theta)w}} \mathbb{P}^{(\theta,u)}(\lambda_1 \sim x) dQ^{(\theta,q_x(\theta)w)}(u)$$

where $\frac{d\mathbb{P}^{(\theta,u)}}{d\mathbb{P}} \propto e^{\theta N \langle u, Hu \rangle}$ as before, and we take $\frac{dQ^{(\theta,qw)}}{dP} \propto 1_{\mathcal{U}_{qw}} \mathbb{E} e^{\theta N \langle u, Hu \rangle}.$

Upper bound: trivially bound the integral by 1, optimize θ , worst case w.

<u>Lower bound:</u> task is to show the integral is $\geq e^{-o(N)}$ for some $\theta = \theta_{x,w}$.

Problem: As $u \in \mathcal{U}_{q_x(\theta)w}$ are not delocalized, we can't compute $\mathbb{E}^{(\theta,u)}\lambda_1$ by a BBP computation as before.

Solution: Can show λ_1 concentrates under $\mathbb{P}^{(\theta,u)}$, with mean \approx continuous in θ and u (under the ℓ^2 metric). $\mathbb{E}^{(\theta,u)}\lambda_1 \sim 2$ for small θ , $\mathbb{E}^{(\theta,u)}\lambda_1 \to \infty$ as $\theta \to \infty$.

Moreover, we can show the measures $Q^{(\theta,qw)}$ concentrate on a small ball in the 2-Wasserstein metric, with center $v_{\theta,w} \in \mathbb{S}^{N-1}$ that varies continuously with θ .

Intermediate Value Theorem yields $\theta = \theta_{x,w}$ such that $\mathbb{E}^{(\theta, v_{\theta,w})} \lambda_1 \sim x$.

Thanks for your attention!