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The spectrum of Wigner matrices

Let H be an N x N normalized real sub-Gaussian Wigner matrix
i.e. real symmetric with H; = —Z=X; for {Xj}i<; iid copies of a

standardized variable X with sub-Gaussian law .
Eigenvalues Ay < -+ < 1. W_
2 2

Semicircle law: The ESD iy = ZIN:]. 0, concentrates around the semicircle
measure do(x) = 5= (4 — X2)1+/2dx.

2

* Quantitative: P(|fin(f) — o(f)] > €) < exp(—ce?N?) for f convex,
1-Lipschitz if u has bounded support [Guionnet—Zeitouni '00].

* Fluctuations: N{iy(f) converges to a Gaussian for f smooth.
(Optimal condition f € H*/?*¢ [Landon-Sosoe '22].)

* LDP for GOE case [Ben Arous—Guionnet '97]:
L log P ~ v) ~ T(v) —M

N 2 2

—1 [ [log|x — yldv(x)dv(y) + § [ x*dv(x) — c.
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Convergence at the edge: \; — 2 w.h.p. [Fiiredi-Komlés '81].
* Quantitative: P(|]\1 — 2| > ¢) < exp(—ce’N) if o has bounded support.
% Fluctuations: N*/3(\; —2) = TW. [Tracy-Widom, Forester '94] (GOE),
[Soshnikov "99]
x LDP for GOE case [Ben Arous—Dembo—Guionnet '99]:

[2 Vy?—4dy x>2

x < 2.

— 108 B(A ~ x) ~ T, (x) =

]P)()\l ~ 3) ~ 6704715N.
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A universal (!) LDP (Guionnet—Husson '18)

For centered yu and A, (t) := log [, e™du(x), pis ...

sub-Gaussian (SG) if  A,(t) < Kt® vVt € R, constant K < oo
sharp sub-Gaussian (SSG) if Au(t) <1t =A,(t) VteR

where y(dx) = \/%e’xz/de. Ex: Rademacher, Unif[—+/3, /3] are SSG.

Theorem (Guionnet—Husson "18)
Assume p is sharp sub-Gaussian. Then A1 satisfies an LDP with speed N and

good rate function Z. In particular, for each fixed x € R,
Lz

T 10gP(1A — x| < 6) = ~T,(x) + o(1).

(In this talk we write “o(1)"” for errors going to zero after N — oo then ¢ | 0.)

Strategy of tilting by spherical integrals since applied in many contexts:

A+ UBU”*, matrices with a variance profile, perturbed Wigner matrices,
generalized sample covariance matrices. [Guionnet—Maida, Husson,
Belinschi-Guionnet—-Huang, McKenna, Biroli-Guionnet, Maillard, Husson—McKenna]

Question: How does the matrix “typically” achieve A\ ~ x ?



Non-universal LDPs for heavier-tailed/sparse matrices

For some matrices without uniformly sub-Gaussian entries, deviations of the
spectrum are due to localization phenomena — events involving o(/N?) entries.

e Stretched-exponential tails: if —logP(|X| > t) < t* for a € (0,2),
large deviations of fiy and of A\; (at scale 1) are due to the appearance of
large entries [Bordenave—Caputo '14], [Augeri '16].

e Sparse Bernoulli(p) matrices: For the adjacency matrix A of Erdés—Rényi
graph G(N, p) with p = o(1), deviations of eigenvalues to scale Np,
or spectral moments Tr A® at scale (Np)*, are due to appearance of
“planted” low-rank structures corresponding to dense subgraphs with
O(N?p?) edges; or due to high-degree vertices.
[Bhattacharya—Ganguly—Lubetzky—Zhao '16], [Augeri '18], [C.-Dembo 18],
[Bhattacharya—Ganguly '18], [Bhattacharya—Bhattacharya—Ganguly '20], [Basak
'21], [C.—Dembo '22]

e Randomly weighted diluted networks: A ® Y with {Yj}i<; iid:
[Ganguly-Nam '21], [Ganguly—Hiesmayr—Nam '22], [Augeri-Basak '23].



Conditional structure of sparse Bernoulli matrices on tail events

For a,b >0, § € (0,1) let &,,5(5) be the event that .]

S A==, > A= (1 =O)JN - 1J])

i,jel ied,jele

J
for some I, J C [N] with |I| ~ \/apN, |J| ~ bp?N. @f

Theorem (C.—Dembo ’22)

For N™'/3 « p < 1 and fixed 1,...,0m >3, s1,...,5m >0,

]P’( U &) ‘ Tr(A%) > (1 + s )(Np)™ , k=1,..., m) >1- pMP
(ax,b+)EO(L,3)

for some c(¢,s,d) > 0, where O({, s) is the set of minimizers for a

non-convex linear optimization problem determined by £, s.

Special case of a result for any fixed collection of graphs. = Typical structure

of Exponential Random Graphs, extending [Chatterjee—Diaconis '12].

Harel-Mousset—Samotij '18: Case m = 1, ¢1 = 3 (and general clique counts).



Conditional structure of sparse Bernoulli matrices on tail events

For a,b >0, § € (0,1) let &,,5(5) be the event that .]

S A==, > A= (1 =O)JN - 1J])

i,jel ied,jele

J
for some I, J C [N] with |I| ~ \/apN, |J| ~ bp?N. @f

Theorem (C.—Dembo ’22)
For N™'/3 « p < 1 and fixed 1,...,0m >3, s1,...,5m >0,

]P’( U &) ‘ Tr(A%) > (1 + s )(Np)™ , k=1,..., m) >1- pMP
(ax,bx)€EO(L,5)

for some c(¢,s,d) > 0, where O({, s) is the set of minimizers for a
non-convex linear optimization problem determined by £, s.

Proof combines quantitative LDPs for Erd8s—Rényi (hyper)graphs
[C.-Dembo—Pham '20] with stability analysis of the NMF approximation for the
upper tail studied in [Bhattacharya—Ganguly-Lubetzky—Zhao '16].



Conditional structure of sparse Bernoulli matrices on tail events

LomloE e

AN N

On the 2D manifold of “clique-hub” matrices (up to relabeling rows/columns),

level sets of subgraph-counting functions (green/blue/yellow) and relative
entropy (red) are ~smooth curves. Upper tail event is light-blue region, set
O(Fi, F2, F3, 51, 52, 53) of optimizers of entropy are circled in red.

Plotted for s3 = 100 and 3 choices of (s1,s:): A. (3,24), B. (4,25), C. (4,31.5).



General sub-Gaussian matrices: non-universal LDPs

Back to Wigner matrices, assume law p of entries is general sub-Gaussian.

Building on strategy of Guionnet—Husson, [Augeri—-Guionnet—Husson '19] and
[C.—Ducatez—Guionnet '23] show in many cases the existence of Z,(x) such
that

108 E(Is — x| < 8) = ~Zu(x) + o(1) (%)

In particular:

e We always have Z,(x) < Z,(x). (Deviations are at least as likely as in the
sharp sub-Gaussian case.)
e There exists x, € (2, 00] such that Z,,(x) = Z,(x) for x < x,.
o If 9, (t) := Au(t)/t* is increasing or achieves its maximum at some finite
t. then (x) holds for all x € R.
e Main technical result of CDG23 gives a non-asymptotic approximation
1

N log P(|\1 — x| <) = fILN)(X)

in terms of an N-dependent optimization problem over restricted annealed
free energies for a spiked spherical SK model.



Classical tilting: Cramér LDP

For the sample mean X = & S°% X; for iid X; ~ s, we have

1 N/ *

N log P(|X — x| < 0) = —A,(x) + o(1)
where A}, (x) = supgcp{0x — AL(0)}.
Proof: Defining a one-parameter family of tilted measures:

PO() = e MO 1), geR
we can reexpress
P(|X — x| < 8) = e VO gINX 1 (X — x| < §)
_ eN(/\u(9)*9X+O(1)) PW)(\Y _ X| < 5).

Upper bound: trivially bound P (|X — x| < §) < 1 and optimize 6.

Lower bound: show that for the optimizer 6, P (X — x| < §) > e ™. O



Tilting by spherical integrals (Guionnet—Husson '18)

For N x N symmetric M, @ > 0 and P the uniform surface measure on SV=1,

(M, 0) ::/ N M) gp ()
sN—1

Quenched free energy. Guionnet—Maida '05: on {A1 ~ x} N{jin ~ o},

0 6 < 16Go(x)

1

Zlog I(H,0) ~ J(x,0) :=
n ‘08 !(H,0) ~ J(x.0) {9 — 1 [log(x — \)do(A) — L log(2e6) 0> 1G,(x)
where G,(x) = 1(x — v/x? — 4) is the Stieltjes transform of & at x > 2.

Annealed free energy. Fy(0) := ﬁ log EI(H, 6). By Fubini,
EI(H,0) = / EeM M gp(u / HEeQ‘WXv“'“J dP(u)
gN—1 gN—1

—  Fn(9) = l|og/ exp (ZA,,,(zefou,-uj))dP(u).
N SN—1 i<
For i SSG, show: (A) % logP(A1 ~ x) ~ infoso{Fn(6) — J(x,0)},
and (B) Fn(0) — 6°. (Independent of p!)
A computation gives inf>0{0° — J(x,0)} = —Z,(x). O 10



Tilting by spherical integrals: Annealed — Quenched

Argument for (A) 1 log P(A1 ~ x) ~ infg>o{Fn(6) — J(x,0)}.
Use two levels of tilting: For 6 > 0, u € S"~!, define measures

B Ee@N(u,Hu) ]l(A)

(6,u) .
P (A) T EeGN<u,Hu) ? on (Q7-F)7
EeNw:Hu gp(y)
() L fB __—NFy(0) ON (u, Hu) N—1
QR"(B) = T w eIV dp(u) e N /BEe dP(u) on SV
SN—

With & := {\1 ~ x, i ~ o}, we have
P(&) = e MOt MR (H, 0) 1(E,)
_ e—N(J(X,€)+D(1))/ EeBN(u,Hu) ]l(SX)dP(u)
SN—l
_ efN(J(XA,G)Jro(l))/ PO (£,) BN HD gp(y)
sN—1

_ N(FN(O)=J(x,0)+0(1)) / P9 (£,) dQ (u).

N—1

)

Upper bound: trivially bound P("*)(£,) < 1 and optimize 6.
11



Tilting by spherical integrals: Annealed — Quenched

Lower bound:

Showed P(E) = eNFu(O)=I(0)+e(N) / PO (£,)dQ) (u)

JgN—-1

where

dpt®¥) 0N (u, Hu) dQ¥
x e

ON (u,Hu)
7P , 4P (u) x Ee .

Ex={ M ~x,in~o},

With 0, the optimizing choice of 6 from the upper bound, only remains to
show {\1 ~ x} is likely under P(%¥), at least for all u in some D C SV!
such that Q) (D) > e=°M),

Take D= {u e S" ! |julw < Nf%ff} set of delocalized unit vectors. Then
(1) Q(D) = e~ (easy).
(2) Forany ue D, H 2 20uu™ + H under PO for a Wigner matrix H.

(Note that B¢ H; = 20/ Nujuj) ~ 20u;u;.)

LA
By the BBP transition we get A\ ~ x w.h.p. under P4 for any u € D. O

12



Tilting by spherical integrals: Universal annealed free energy

Now to show (B) Fn(0) := % log E/(H,0) — 67,

Fn(0) = % log /stl exp <Z A/,(Qa\/NUin)) dP(u)

i<j

~ % Iog/ exp (Z /\,,,(20\mu;uj-)) dP(u).

i<j
For u delocalized we can use the Taylor expansion A, (t) ~ 3> for t = o(1):

Nu(20VNujup) ~ > " 26° Nuj uf ~ 6°N.

i<j

Universality comes from expansion of A, near 0 (as for the CLT!).

13



New ideas to capture localization

For yu SSG, showed:  (A) § logP(A1 ~ x) ~ supyso{ Fn(0) — J(x,6)},
(B) Fn(0) — 6°.

Proof suggests that on {\1 ~ x}, H 2 20uu” + H for a random delocalized w.
When p is not SSG, both (A) and (B) are false.

e Upper bound 4 log P(A1 ~ x) < Fn(0) — J(x,0) + o(1) still true, but not
always sharp [AGH19].

e No longer true that Fy() ~ 6. Contribution of u € S¥~! with large
entries carries too much weight — D no longer typical under QY.

e For u not delocalized, no longer true that H 2 20uu” + H under P,
Can't do a BBP computation!

What is happening? Heavier tails open up non-universal localization strategies
that compete with delocalized tilt.

In fact, large deviations of \; result from a combination of the two!

Localization will be reflected by large entries of the associated eigenvector v;.
So we do a spherical integral tilt with a fixed choice of large entries, then

optimize them at the end (there are o(N) of them).
14



New ideas to capture localization

Let £, be the set of N*~?"-sparse vectors in the ball BN. For z € £, we let
U = {u e u" ~ 2, [lulauppierelloe < N7}
and denote the restricted annealed free energy

FN(Q; z) = % |0gIE/ eeN(u,Hu> dP(U)

z

Theorem (C.-Ducatez—Guionnet '23)

(With technical conditions) If i is a sufficiently small constant, for any x > 2,

1 .
7 1og (X — x| < 8) = e {Fn(0: ax(O)w) — J(x,0)} + o(1)

where qx(0) := (1 — G“éx))in.

Note Uy = D so Fn(0;0) ~ 62, and RHS is bounded below by —Z,(x) + o(1).
For x < x, the supremum is in fact attained at w = 0, giving Z,,(x) = Z,(x).

15



New ideas to capture localization

Recall

1 1 »
Fu(0:2) = IogIE/ !N gp(u) = N Iog/ eZi<i M@0V W) gp ).
128

z z

Theorem (C.—-Ducatez—Guionnet '23)
For any z € L, and 6 > 0,

Fn(0:2) = ¢™(0,2) + ¢l (0, 2) + 5™ (0, 2) + Os(N™"?)

where
el B 1
(pdl(evz) = 02(1 - HZ||§)27 905\/ (972) = N ZAH(Q\/NLZJ)
i<j
L2
v (0,2) = / N (20zis)dv(s v }—f z||5.
0= e, { Z w(2625)di(s) ~HEwy) | — S112I3

[ s*dv(s)=1—|z]I3

16



Case of 7, increasing

For e.g. sparse Gaussian entries, 1, (t) = A, (t)/t’ is increasing as |t| — co.
In this case we can show

Fn(6; 2) < Fn(6; ]1z]2e1) + o(1)

for any z € BY. Then we obtain

Theorem (C.—Ducatez—Guionnet '23)

Assume 1), (t) is increasing as |t| — co. Then A1 satisfies a full large
deviation principle with speed N and good rate function Z,, which is infinite
on (—o0,2) and is otherwise given by

T.() = inf sup{J(x,0) + 2aqu(0)’ — Yewa®0?qu(0)* — (1 — agu(60))?
a€[0,1] >0 2

s | [ Masa079ans) - Hu
[ 2=

Moreover, on {\1 ~ x}, vi has a coordinate of size Q(1).

17



New ideas to capture localization

. I
With Ew = {A1 ~ x, v,"®® ~ w}, we can show

P(Exw) = eN(FN(9;qx(9)W)*J(X79)+0(1))/ ]P’(e'”)()\l ~ X) dQ(H-qx(b')W)(u)
JUg(0)w

(6,u) (6,qw)
‘“PdP oc e?NHu) ag hefore, and we take 99" o 1, ReON{w:Hu)

where S—— or -

Upper bound: trivially bound the integral by 1, optimize 0, worst case w.
Lower bound: task is to show the integral is > e °W) for some 6 = Ohe e

Problem: As u € U, (s)» are not delocalized, we can’t compute E®9 )\, by a
BBP computation as before.

Solution: Can show \; concentrates under P(***) with mean ~ continuous in
and u (under the £2 metric). E®“\; ~ 2 for small 6, E®“)\; — 0o as § — oo.

Moreover, we can show the measures Q(G’qw) concentrate on a small ball in the
2-Wasserstein metric, with center vy, € SV~! that varies continuously with 6.

Intermediate Value Theorem yields 6 = 6, ,, such that E®“o.w))\; ~ x. O

18



Thanks for your attention!
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