Large deviations of subgraph counts for sparse Erdős-Rényi graphs

Amir Dembo's birthday conference
2018/12/15

Nick Cook, UCLA

[^0]

CLTs and LDPs: Old and new

Classical: $\left\{X_{i}\right\}_{i \geq 1}$ iid, standardized, finite MGF. $S_{N}=\sum_{i \leq N} X_{i}$.

- CLT (de Moivre, Laplace...):

$$
\mathbb{P}\left\{\frac{S_{N}}{\sqrt{N}} \in[a, b)\right\} \rightarrow \gamma([a, b)) \forall a<b
$$

- LDP (Cramér):

$$
\frac{1}{N} \log \mathbb{P}\left\{\frac{S_{N}}{N} \in[a, b)\right\} \rightarrow-\mathrm{I}(a) \forall 0<a<b \leq \infty \text { (non-universal) }
$$

Extensions to weighted sums $f(X)=\sum_{i \leq N} \alpha_{i} X_{i}=\langle\alpha, X\rangle$
(linear functionals on product probability spaces)
Nonlinear functions?

CLTs and LDPs: Old and new

Nonlinear functions:
Example 1: Triangle counts in $G(N, p)$
Let \boldsymbol{A} be $N \times N$ adjacency matrix for $\boldsymbol{G} \sim G(N, p)$.
$f(\boldsymbol{A})=\operatorname{Tr} \boldsymbol{A}^{3}=\sum_{i, j, k} \boldsymbol{A}_{i j} \boldsymbol{A}_{j k} \boldsymbol{A}_{k i}=6 \times[\#$ of triangles in $\boldsymbol{G}]$.
Cubic polynomial of $\binom{N}{2}$ iid $\operatorname{Ber}(\mathrm{p})$ variables.
$\mathbb{E} f(\boldsymbol{A}) \sim N^{3} p^{3}$

* CLTs: Ruciński '88, Barbour-Karoński-Ruciński '89 (Stein's method)
* LDPs: (This talk) Chatterjee-Varadhan '11, Chatterjee-Dembo '14, Eldan '16, C.-Dembo '18, Augeri '18, Kozma-Samotij '18... also Lubetzky-Zhao '12, '14, Bhattacharya-Ganguly-L-Z '16

Example 2: k-AP counts in sparse random sets Let $\boldsymbol{S} \subset \mathbb{Z} / N \mathbb{Z}$ with $\{\mathbf{1}(i \in \boldsymbol{S})\}_{i}$ iid $\operatorname{Ber}(\mathrm{p})$, $f(\boldsymbol{S})$ the number of 3-term arithmetic progressions in \boldsymbol{S}.

Cf. Chatterjee-Dembo '14, Bhattacharya-Ganguly-Shao-Zhao '16.

Nonlinear large deviations (Chatterjee-Dembo '14)

Let $f, h:[0,1]^{d} \rightarrow \mathbb{R} \quad(d \rightarrow \infty)$.

Large deviations (with $\boldsymbol{x} \sim \operatorname{Ber}(p)^{\otimes d}$) Gibbs measure $\nu_{h}(x)=\frac{1}{Z_{h}} e^{h(x)}$
$\log \mathbb{P}\{f(\boldsymbol{x}) \geq(1+\delta) \mathbb{E} f(\boldsymbol{x})\} \sim ? \quad \log Z_{h}=\log \sum_{x \in\{0,1\}^{d}} e^{h(x)} \sim ?$
Conditional on $\boldsymbol{x} \in\{f \geq(1+\delta) \mathbb{E} f\}, \quad$ What does a typical sample $\boldsymbol{y} \sim \nu_{h}$ what does \boldsymbol{x} look like? look like?

Well understood for linear functionals. If h has low-complexity gradient,

- (C-D '14) Naive mean field approximation is valid:

$$
\log Z_{h} \sim \sup _{x \in[0,1]^{d}}\left\{h(x)+H\left(\mu_{x}\right)\right\}
$$

(Exact for h linear functional.) Also Yan '17, Augeri '18.

- ν_{h} is approximately a mixture of $e^{o(d)}$ product measures. (\Rightarrow NMFA) (Eldan '16, Eldan-Gross '17, Austin '18).

Examples: triangle counts

Ex 1. (Eldan) Consider $h: \mathcal{G}_{N} \cong\{0,1\}\left(\begin{array}{c}\binom{N}{2}\end{array} \rightarrow \mathbb{R}\right.$,

$$
h(G)=-\frac{1}{N} \operatorname{Tr} A_{G}^{3}=-\frac{6}{N} \times \#\{\text { triangles in } G\} .
$$

Expect $\boldsymbol{G} \sim \nu_{h}$ to be approximately a mixture of $2^{N}=e^{o\left(N^{2}\right)}$ inhomogeneous Erdős-Rényi graphs (product measures) with bipartite structure.

Examples: triangle counts

Ex 2. Let $\boldsymbol{G} \sim G(N, p)$. Conditional on \boldsymbol{G} having extra triangles, i.e.

$$
\left\{\operatorname{Tr} A_{G}^{3} \geq N^{3} q^{3}\right\}, \quad q>p,
$$

how are the edges distributed? A few possibilities:
(A) As in $G(N, q)$?
(B) As in $G(N, p)$ with a small planted clique?
(C) As in $G(N, p)$ with a small planted hub?

* For much (but not all!) of $0<p<q<1$ fixed, the answer is (A).
(Chatterjee-Varadhan '11 + Lubetzky-Zhao '12).
* Conjecture: For $N^{-1 / 2} \ll p \ll 1, q=(1+\delta) p$, Answer is (B) or (C), depending on size of δ.

The upper tail for homomorphism counts: dense case

- For $H=\left([n], E_{H}\right), \quad G=\left([N], E_{G}\right)$

$$
\begin{aligned}
t(H, G) & =\frac{1}{N^{n}} \operatorname{hom}(H, G)=\frac{1}{N^{n}} \sum_{\varphi:[n] \rightarrow[N]} \prod_{\{k, /\} \in E} A_{G}(\varphi(k), \varphi(I)) \\
& =\mathbb{P}\{\text { uniform random } \varphi:[n] \rightarrow[N] \text { is edge preserving }\} .
\end{aligned}
$$

- E.g. $t\left(C_{\ell}, G\right)=\frac{1}{N^{e}} \operatorname{Tr}\left(A_{G}^{\ell}\right)$.
- For p fixed, Chatterjee-Varadhan '11 obtained the LDP for $\{G(N, p)\}_{N \geq 1}$, viewed as measures on the topological space of graphons (see Lovasz's book).
- Since $t(H, \cdot)$ are continuous in this topology (the counting lemma), this yields LDPs for $t(H, \boldsymbol{G}), \boldsymbol{G} \sim G(N, p)$.

The upper tail for homomorphism counts: sparse case

- Now consider $p=N^{-c}, c \in(0,1)$. Graphons are of no help here...
- Chatterjee-Dembo '14: LDP for $t(H, \boldsymbol{G})$ when

$$
\begin{gathered}
N^{-\kappa(H)} \ll p \ll 1, \quad \kappa(H)=\frac{c}{\Delta_{H}\left|E_{H}\right|} . \\
\left(\kappa\left(C_{3}\right)=\frac{1}{41}+\varepsilon\right) . \text { Eldan '16: } \kappa\left(C_{3}\right)=\frac{1}{18}+\varepsilon .
\end{gathered}
$$

Theorem (C.-Dembo '18)

Fix $H=([n], E)$ connected of max degree $\Delta \geq 2$. If

$$
N^{-\kappa(H)} \ll p \ll 1, \quad \kappa(H)=\frac{1}{3 \Delta-2},
$$

then: $\log \mathbb{P}\left\{t(H, \boldsymbol{G}) \geq(1+\delta) p^{|E|}\right\} \sim-c_{H}(\delta) N^{2} p^{\Delta} \log (1 / p)$.

The upper tail for homomorphism counts: sparse case

Theorem (C.-Dembo '18)

Fix $H=([n], E)$ connected of max degree $\Delta \geq 2$. If

$$
N^{-\kappa(H)+\varepsilon} \leq p \ll 1, \quad \kappa(H)=\frac{1}{3 \Delta-2},
$$

then: $\log \mathbb{P}\left\{t(H, \boldsymbol{G}) \geq(1+\delta) p^{|E|}\right\} \sim-c_{H}(\delta) N^{2} p^{\Delta} \log (1 / p)$.
Remarks:

- Formula for $c_{H}(\delta)$ was obtained by Bhattacharya, Ganguly, Lubetzky and Zhao '16, valid down to $\kappa(H)=1 / \Delta$. Reflects a phase transition between planted clique and planted hub structures.
- Actually get a better (more complicated) $\kappa(H)$, in particular $\kappa(H)=1 /(2 \Delta-1)$ for H a star.
- In the case of cycles we can sharpen to $\kappa\left(C_{\ell}\right)=1 / 2+\varepsilon, \ell \geq 4$, (Augeri ' $18: \ell \geq 3$).
- Also get lower tails.

Ideas I: Coverings of events by convex bodies

Want to show for $\operatorname{Ber}(\mathrm{p})$ vector $\boldsymbol{a} \in\{0,1\}^{d}$ and $\mathcal{L} \subseteq[0,1]^{d}$,

$$
\begin{gathered}
\log \mathbb{P}(\boldsymbol{a} \in \mathcal{L}) \leq-\mathrm{I}_{p}(\mathcal{L})+\text { Error }, \quad \mathrm{I}_{p}(\mathcal{L}):=\inf \left\{\mathrm{I}_{p}(x): x \in \mathcal{L}\right\} . \\
I_{p}(x)=D_{K L}\left(\mu_{x} \| \mu_{p}^{\otimes d}\right)=\sum_{i=1}^{d} x \log \frac{x}{p}+(1-x) \log \frac{1-x}{1-p} .
\end{gathered}
$$

* (Easy) true (with Error =0) for $\mathcal{L}=\mathcal{H} \cap[0,1]^{d}, \mathcal{H}$ closed half-space.
* Exercise: true (with Error =0) for \mathcal{L} compact and convex. [cf. Dembo-Zeitouni Ex. 4.5.5.]
* But for UT problems, we have $\mathcal{L}=\{x: f(x) \geq t\}$, non-convex.
* Idea: Show we can efficiently cover such \mathcal{L} with convex bodies $\left\{\mathcal{B}_{i}\right\}_{i \in \mathcal{I}}$ on which f is essentially constant. Then

$$
\begin{aligned}
\log \mathbb{P}(\boldsymbol{a} \in \mathcal{L}) \leq \log \sum_{i \in \mathcal{I}} \mathbb{P}\left(\boldsymbol{a} \in \mathcal{B}_{i}\right) & \leq-\min _{i \in \mathcal{I}} \mathrm{I}_{p}\left(\mathcal{B}_{i}\right)+\log |\mathcal{I}| \\
& =-\mathrm{I}_{p}\left(\cup_{i} \mathcal{B}_{i}\right)+\log |\mathcal{I}| \\
& \approx-\mathrm{I}_{p}(\mathcal{L})+\log |\mathcal{I}|
\end{aligned}
$$

Ideas II: the regularity method

Weighted adjacency matrices $\mathcal{X}_{N}:=\left\{X=\left(x_{i j}\right)_{1 \leq i<j \leq N}, x_{i j} \in[0,1]\right\}$.
Cut norm: $\|X\|_{\square}=\max _{S, T \subseteq[N]}\left|\sum_{i \in S, j \in T} x_{i j}\right|$.
Weak regularity lemma (compactness):
For any $X \in \mathcal{X}_{N}$ and $k \in \mathbb{N}$ there exists a partition \mathcal{P} of $[N]$ into k parts and $Y \in \mathcal{X}_{N}$ constant on \mathcal{P}-blocks such that $\|X-Y\|_{\square} \leq \frac{2}{\sqrt{\log k}}$.

Counting lemma (continuity): (recall $t(H, X)=\frac{1}{N^{\mid V T}}$ hom (H, X))
For any graph $H=(V, E)$ and $X, Y \in \mathcal{X}_{N}$,
$|t(H, X)-t(H, Y)| \leq|E| \cdot \frac{1}{N^{2}}\|X-Y\|_{\square}$.
Weak regularity lemma due to Frieze-Kannan'99 (regularity lemma goes back to Szemerédi '70s).

Taken together: Can cover \mathcal{X}_{N} with neighborhoods of bdd number of graphons on which $t(H, \cdot)$ functionals are essentially constant. (key for Chatterjee-Varadhan '11.)

Spectral proof of the regularity lemma

(Cf. Frieze-Kannan '99, Szegedy '11, Tao blog '12)
Let $X=\sum_{j=1}^{N} \lambda_{j} u_{j} u_{j}^{\top}$ spectral decomposition for $X \in \mathcal{X}_{N}$, with $\|X\|_{\text {op }}=\lambda_{1}(X) \geq\left|\lambda_{2}(X)\right| \geq \cdots \geq\left|\lambda_{N}(X)\right|$.

For any $0 \leq r \leq N-1$,

$$
(r+1)\left|\lambda_{r+1}(X)\right|^{2} \leq \sum_{j=1}^{N} \lambda_{j}^{2}=\sum_{i, j=1}^{N}\left|X_{i j}\right|^{2} \leq N^{2}
$$

$\Rightarrow \quad\left|\lambda_{r+1}(X)\right| \leq \frac{N}{\sqrt{r+1}}$.
So for r large, X is close in operator norm to a rank- r matrix.
Take parts of \mathcal{P} to be mutual refinement of approximate level sets of u_{1}, \ldots, u_{r}.

Spectral regularity lemma for random graphs

Proposition

Let $N \in \mathbb{N}, K \geq 1, p \in(0,1)$ with $N p \geq \log N$, and $1 \leq r \leq N p$. There exists a partition $\{0,1\}^{\binom{N}{2}}=\bigsqcup_{j=0}^{J} \mathcal{E}_{j}$ with the following properties:
(a) $\log J \lesssim r N \log \left(3+\frac{r}{K_{p}}\right)$;
(b) $\mathbb{P}\left\{\boldsymbol{G}_{N, p} \in \mathcal{E}_{0}\right\} \lesssim \exp \left(-c K^{2} N^{2} p^{2}\right)$;
(c) For each $1 \leq j \leq J$, there exists $Y_{j} \in \mathcal{X}_{N}$ of rank at most r such that $\left\|A_{G}-Y_{j}\right\|_{\text {op }} \lesssim \frac{K N_{p}}{\sqrt{r}}$ for all $G \in \mathcal{E}_{j}$.

Spectral regularity lemma for random graphs

Proposition

Let $N \in \mathbb{N}, K \geq 1, p \in(0,1)$ with $N p \geq \log N$, and $1 \leq r \leq N p$. There exists a partition $\{0,1\}^{\binom{N}{2}}=\bigsqcup_{j=0}^{J} \mathcal{E}_{j}$ with the following properties:
(a) $\log J \lesssim r N \log \left(3+\frac{r}{K_{p}}\right)$;
(b) $\mathbb{P}\left\{\boldsymbol{G}_{N, p} \in \mathcal{E}_{0}\right\} \lesssim \exp \left(-c K^{2} N^{2} p^{2}\right)$;
(c) For each $1 \leq j \leq J$, there exists $Y_{j} \in \mathcal{X}_{N}$ of rank at most r such that $\left\|A_{G}-Y_{j}\right\|_{\text {op }} \lesssim \frac{K N_{p}}{\sqrt{r}}$ for all $G \in \mathcal{E}_{j}$.

Spectral counting lemma for random graphs

Proposition

Let $H=(V, E)$ with $|V|=n,|E|=m$, max degree Δ.
Let $N \in \mathbb{N}$ and $p \in(0,1)$. For $K \geq 1$ set

$$
\mathcal{E}_{H}(K)=\left\{X \in \mathcal{X}_{N}: \exists F \leq H \text { with } \operatorname{hom}_{F}(X)>K N^{\left|V_{F}\right|} p^{\left|E_{F}\right|}\right\} .
$$

(a) If $N^{-1 / \Delta}<p<1$, then for any $K \geq 2$,

$$
\mathbb{P}\left\{\boldsymbol{G}_{N, p} \in \mathcal{E}_{H}(K)\right\} \lesssim_{H} \exp \left(-c(H) K^{1 / n} N^{2} p^{\Delta}\right) .
$$

(b) For any $X, Y \in \mathcal{X}_{N}$ with $X \notin \mathcal{E}_{H}(K)$, for all $F \leq H$,

$$
|\operatorname{hom}(F, X)-\operatorname{hom}(F, Y)| \lesssim_{H} K N^{\left|V_{F}\right|} p^{\left|E_{F}\right|} \frac{\|X-Y\|_{\mathrm{op}}}{N p^{\Delta}} .
$$

Open problems and future directions

1. Prove a sharper counting lemma (perhaps using different convex bodies).
2. $p \ll N^{-1 / \Delta}$?
3. Other measures besides $G(N, p)$?
4. Partition function / structural decomposition for exponential random graphs (Chatterjee-Diaconis '12, Chatterjee-Dembo '14, Eldan-Gross '17).

Happy birthday, Amir!

[^0]: Based on joint work with Amir

