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CLTs and LDPs: Old and new

Classical: {Xi}i≥1 iid, standardized, finite MGF. SN =
∑

i≤N Xi .

• CLT (de Moivre, Laplace...):

P
{

SN√
N
∈ [a, b)

}
→ γ([a, b)) ∀ a < b (universal)

• LDP (Cramér):
1
N

log P
{

SN
N
∈ [a, b)

}
→ −I(a) ∀ 0 < a < b ≤ ∞ (non-universal)

Extensions to weighted sums f (X ) =
∑

i≤N αiXi = 〈α,X 〉
(linear functionals on product probability spaces)

Nonlinear functions?
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CLTs and LDPs: Old and new

Nonlinear functions:

Example 1: Triangle counts in G (N, p)

Let A be N × N adjacency matrix for G ∼ G (N, p).

f (A) = Tr A3 =
∑

i,j,k AijAjkAki = 6× [# of triangles in G ].

Cubic polynomial of
(
N
2

)
iid Ber(p) variables.

E f (A) ∼ N3p3

∗ CLTs: Ruciński ’88, Barbour–Karoński–Ruciński ’89 (Stein’s method)

∗ LDPs: (This talk) Chatterjee–Varadhan ’11, Chatterjee–Dembo ’14,

Eldan ’16, C.–Dembo ’18, Augeri ’18, Kozma–Samotij ’18...

also Lubetzky–Zhao ’12, ’14, Bhattacharya–Ganguly–L–Z ’16

Example 2: k-AP counts in sparse random sets

Let S ⊂ Z/NZ with {1(i ∈ S)}i iid Ber(p),

f (S) the number of 3-term arithmetic progressions in S .

Cf. Chatterjee–Dembo ’14, Bhattacharya–Ganguly–Shao–Zhao ’16. 2



Nonlinear large deviations (Chatterjee–Dembo ’14)

Let f , h : [0, 1]d → R (d →∞).

Large deviations (with x ∼Ber(p)⊗d) Gibbs measure νh(x) = 1
Zh
eh(x)

logP
{
f (x) ≥ (1 + δ)E f (x)

}
∼ ? logZh = log

∑
x∈{0,1}d e

h(x) ∼ ?

Conditional on x ∈ {f ≥ (1+δ)E f },
what does x look like?

What does a typical sample y ∼ νh
look like?

Well understood for linear functionals. If h has low-complexity gradient,

• (C–D ’14) Naive mean field approximation is valid:

logZh ∼ sup
x∈[0,1]d

{h(x) + H(µx)}.

(Exact for h linear functional.) Also Yan ’17, Augeri ’18.

• νh is approximately a mixture of eo(d) product measures. (⇒ NMFA)

(Eldan ’16, Eldan–Gross ’17, Austin ’18).
3



Examples: triangle counts

Ex 1. (Eldan) Consider h : GN ∼= {0, 1}(
N
2) → R,

h(G ) = − 1

N
TrA3

G = − 6

N
×#{ triangles in G}.

Expect G ∼ νh to be approximately a mixture of 2N = eo(N2)

inhomogeneous Erdős–Rényi graphs (product measures) with bipartite

structure.
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Examples: triangle counts

Ex 2. Let G ∼ G (N, p). Conditional on G having extra triangles, i.e.{
TrA3

G ≥ N3q3
}
, q > p,

how are the edges distributed? A few possibilities:

(A) As in G (N, q)?

(B) As in G (N, p) with a small planted clique?

(C) As in G (N, p) with a small planted hub?

∗ For much (but not all!) of 0 < p < q < 1 fixed, the answer is (A).

(Chatterjee–Varadhan ’11 + Lubetzky–Zhao ’12).

∗ Conjecture: For N−1/2 � p � 1, q = (1 + δ)p ,

Answer is (B) or (C), depending on size of δ.
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The upper tail for homomorphism counts: dense case

• For H = ([n],EH), G = ([N],EG )

t(H,G ) =
1

Nn
hom(H,G ) =

1

Nn

∑
ϕ:[n]→[N]

∏
{k,l}∈E

AG (ϕ(k), ϕ(l))

= P
{

uniform random ϕ : [n]→ [N] is edge preserving
}
.

• E.g. t(C`,G ) = 1
N` Tr(A`G ).

• For p fixed, Chatterjee–Varadhan ’11 obtained the LDP for

{G (N, p)}N≥1, viewed as measures on the topological space of

graphons (see Lovasz’s book).

• Since t(H, ·) are continuous in this topology (the counting lemma),

this yields LDPs for t(H,G ), G ∼ G (N, p).
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The upper tail for homomorphism counts: sparse case

• Now consider p = N−c , c ∈ (0, 1). Graphons are of no help here...

• Chatterjee–Dembo ’14: LDP for t(H,G ) when

N−κ(H) � p � 1, κ(H) =
c

∆H |EH |
.

(κ(C3) = 1
41 + ε). Eldan ’16: κ(C3) = 1

18 + ε.

Theorem (C.–Dembo ’18)

Fix H = ([n],E ) connected of max degree ∆ ≥ 2. If

N−κ(H) � p � 1, κ(H) =
1

3∆− 2
,

then: logP
{
t(H,G ) ≥ (1 + δ)p|E |

}
∼ −cH(δ)N2p∆ log(1/p).
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The upper tail for homomorphism counts: sparse case

Theorem (C.–Dembo ’18)

Fix H = ([n],E ) connected of max degree ∆ ≥ 2. If

N−κ(H)+ε ≤ p � 1, κ(H) =
1

3∆− 2
,

then: logP
{
t(H,G ) ≥ (1 + δ)p|E |

}
∼ −cH(δ)N2p∆ log(1/p).

Remarks:

• Formula for cH(δ) was obtained by Bhattacharya, Ganguly, Lubetzky

and Zhao ’16, valid down to κ(H) = 1/∆. Reflects a phase

transition between planted clique and planted hub structures.

• Actually get a better (more complicated) κ(H), in particular

κ(H) = 1/(2∆− 1) for H a star.

• In the case of cycles we can sharpen to κ(C`) = 1/2 + ε, ` ≥ 4,

(Augeri ’18: ` ≥ 3).

• Also get lower tails.
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Ideas I: Coverings of events by convex bodies

Want to show for Ber(p) vector a ∈ {0, 1}d and L ⊆ [0, 1]d ,

logP(a ∈ L) ≤ − Ip(L) + Error , Ip(L) := inf{Ip(x) : x ∈ L}.

Ip(x) = DKL(µx‖µ⊗dp ) =
d∑

i=1

x log
x

p
+ (1− x) log

1− x

1− p
.

∗ (Easy) true (with Error=0) for L = H ∩ [0, 1]d , H closed half-space.

∗ Exercise: true (with Error=0) for L compact and convex.

[cf. Dembo–Zeitouni Ex. 4.5.5.]

∗ But for UT problems, we have L = {x : f (x) ≥ t}, non-convex.

∗ Idea: Show we can efficiently cover such L with convex bodies {Bi}i∈I
on which f is essentially constant. Then

logP(a ∈ L) ≤ log
∑
i∈I

P(a ∈ Bi ) ≤ −min
i∈I

Ip(Bi ) + log |I|

= − Ip(∪iBi ) + log |I|
≈ − Ip(L) + log |I|. 9



Ideas II: the regularity method

Weighted adjacency matrices XN := {X = (xij)1≤i<j≤N , xij ∈ [0, 1]}.
Cut norm: ‖X‖� = maxS,T⊆[N]

∣∣∑
i∈S,j∈T xij

∣∣.
Weak regularity lemma (compactness):

For any X ∈ XN and k ∈ N there exists a partition P of [N] into k parts

and Y ∈ XN constant on P-blocks such that ‖X − Y ‖� ≤ 2√
log k

.

Counting lemma (continuity): (recall t(H,X ) = 1
N|V | hom(H,X ))

For any graph H = (V ,E ) and X ,Y ∈ XN ,

|t(H,X )− t(H,Y )| ≤ |E | · 1
N2 ‖X − Y ‖�.

Weak regularity lemma due to Frieze–Kannan’99

(regularity lemma goes back to Szemerédi ’70s).

Taken together: Can cover XN with neighborhoods of bdd number of

graphons on which t(H, ·) functionals are essentially constant. (key for

Chatterjee–Varadhan ’11.)
10



Spectral proof of the regularity lemma

(Cf. Frieze–Kannan ’99, Szegedy ’11, Tao blog ’12)

Let X =
∑N

j=1 λjuju
T
j spectral decomposition for X ∈ XN , with

‖X‖op = λ1(X ) ≥ |λ2(X )| ≥ · · · ≥ |λN(X )|.

For any 0 ≤ r ≤ N − 1,

(r + 1)|λr+1(X )|2 ≤
N∑
j=1

λ2
j =

N∑
i,j=1

|Xij |2 ≤ N2.

⇒ |λr+1(X )| ≤ N√
r+1

.

So for r large, X is close in operator norm to a rank-r matrix.

Take parts of P to be mutual refinement of approximate level sets of

u1, . . . , ur .
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Spectral regularity lemma for random graphs

Proposition

Let N ∈ N,K ≥ 1, p ∈ (0, 1) with Np ≥ logN, and 1 ≤ r ≤ Np. There

exists a partition {0, 1}(
N
2) =

⊔J
j=0 Ej with the following properties:

(a) log J . rN log(3 + r
Kp );

(b) P{GN,p ∈ E0} . exp(−cK 2N2p2);

(c) For each 1 ≤ j ≤ J, there exists Yj ∈ XN of rank at most r such that

‖AG − Yj‖op . KNp√
r

for all G ∈ Ej .
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Spectral regularity lemma for random graphs

Proposition

Let N ∈ N,K ≥ 1, p ∈ (0, 1) with Np ≥ logN, and 1 ≤ r ≤ Np. There

exists a partition {0, 1}(
N
2) =

⊔J
j=0 Ej with the following properties:

(a) log J . rN log(3 + r
Kp );

(b) P{GN,p ∈ E0} . exp(−cK 2N2p2);

(c) For each 1 ≤ j ≤ J, there exists Yj ∈ XN of rank at most r such that

‖AG − Yj‖op . KNp√
r

for all G ∈ Ej .
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Spectral counting lemma for random graphs

Proposition

Let H = (V ,E ) with |V | = n, |E | = m, max degree ∆.

Let N ∈ N and p ∈ (0, 1). For K ≥ 1 set

EH(K ) =
{
X ∈ XN : ∃F ≤ H with homF (X ) > KN |VF |p|EF |

}
.

(a) If N−1/∆ < p < 1, then for any K ≥ 2,

P
{
GN,p ∈ EH(K )

}
.H exp

(
− c(H)K 1/nN2p∆

)
.

(b) For any X ,Y ∈ XN with X /∈ EH(K ), for all F ≤ H,

| hom(F ,X )− hom(F ,Y )| .H KN |VF |p|EF | ‖X − Y ‖op
Np∆

.
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Open problems and future directions

1. Prove a sharper counting lemma (perhaps using different convex

bodies).

2. p � N−1/∆?

3. Other measures besides G (N, p)?

4. Partition function / structural decomposition for exponential random

graphs (Chatterjee–Diaconis ’12, Chatterjee–Dembo ’14,

Eldan–Gross ’17).
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Happy birthday, Amir!
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