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CLTs and LDPs: Old

Classical: {X;};>1 iid, standardized, finite MGF. Sy = Z,.SN X;.
e CLT (de Moivre, Laplace...):
IP{S—\/"’N €la,b)} = (la,b)) Va<b (universal)
e LDP (Cramér):
%Iog]P’{SWN €la,b)} - —I(a) VO<a<b<oo (non-universal)
Extensions to weighted sums f(X) =3,y a;Xi = (o, X)
(linear functionals on product probability spaces)

Nonlinear functions?



CLTs and LDPs: and new

Nonlinear functions:

Example 1: Triangle counts in G(N, p)

Let A be N x N adjacency matrix for G ~ G(N, p).
f(A)=TrA> =Y., AjAj Ay = 6x [# of triangles in G].
Cubic polynomial of (%) iid Ber(p) variables.

Ef(A) ~ N3p3

iJ,k

* CLTs: Ruciniski '88, Barbour—Karoriski—Rucinski '89 (Stein's method)
* LDPs: (This talk) Chatterjee—Varadhan '11, Chatterjee—-Dembo '14,
Eldan '16, C.—Dembo '18, Augeri '18, Kozma—Samotij '18...
also Lubetzky—Zhao '12, '14, Bhattacharya—Ganguly—-L-Z '16

Example 2: k-AP counts in sparse random sets
Let S € Z/NZ with {1(i € S)}; iid Ber(p),
f(S) the number of 3-term arithmetic progressions in S.

Cf. Chatterjee—Dembo '14, Bhattacharya—Ganguly—Shao—Zhao '16. 2



Nonlinear large deviations (Chatterjee-Dembo '14)

Let f,h:[0,1]9 = R (d — o0).

Large deviations (with x ~Ber(p)®9) | Gibbs measure v4(x) = z L gh(x)

logP {f(x) > (1+8)Ef(x)} ~? | logZy=log}, c(oqya €™ ~?

Conditional on x € {f > (1+d)Ef}, | What does a typical sample y ~ v},
what does x look like? look like?

Well understood for linear functionals. If h has low-complexity gradient,

e (C-D '14) Naive mean field approximation is valid:

log Zy ~ sup {h(x) + H(ux)}.
x€[0,1]4

(Exact for h linear functional.) Also Yan '17, Augeri '18.
e vy is approximately a mixture of €°(?) product measures. (= NMFA)
(Eldan '16, Eldan—Gross '17, Austin '18).



Examples: triangle counts

Ex 1. (Eldan) Consider h: Gy = {0, 1}(Azl) — R,

1
h(G) = 7NTrA3 = 7% x #{ triangles in G}.

Expect G ~ v, to be approximately a mixture of 2V = e°(V*)

inhomogeneous Erdés—Rényi graphs (product measures) with bipartite

structure.



Examples: triangle counts

Ex 2. Let G ~ G(N, p). Conditional on G having extra triangles, i.e.
{TrAL > N¢*}, g>p,

how are the edges distributed? A few possibilities:
(A) Asin G(N,q)?

(B) Asin G(N, p) with a small planted clique?
(C) Asin G(N, p) with a small planted hub?

* For much (but not all!) of 0 < p < g < 1 fixed, the answer is (A).
(Chatterjee-Varadhan '11 + Lubetzky—Zhao '12).

* Conjecture: For N"12 < p< 1, g= (1 +6)p,
Answer is (B) or (C), depending on size of §.



The upper tail for homomorphism counts: dense case

e For H=([n], Ey), G = ([N], Eg)

t(H,G)—N—hom(H G)=—= > [ Asle(k),e()

p:[n]—=[N] {k,I}€E

= P { uniform random ¢ : [n] — [N] is edge preserving }.

e Eg t(C,G)= ﬁ Tr(Aé).
e For p fixed, Chatterjee-Varadhan '11 obtained the LDP for
{G(N, p)}n>1, viewed as measures on the topological space of

graphons (see Lovasz's book).

e Since t(H,-) are continuous in this topology (the counting lemma),
this yields LDPs for t(H, G), G ~ G(N, p).



The upper tail for homomorphism counts: sparse case

e Now consider p = N=¢, ¢ € (0,1). Graphons are of no help here...
e Chatterjee-Dembo '14: LDP for t(H, G) when

N «p<l,  k(H) = ——

(k(G3) = & +¢). Eldan '16: k(G3) = & +e.
Theorem (C.—-Dembo '18)
Fix H = ([n], E) connected of max degree A > 2. If

1

N_H(H)<<P<< 17 H(H): ﬁ,

then: logP {t(H, G) > (1 + 6)pEl} ~ —cp(5)N?p™ log(1/p).



The upper tail for homomorphism counts: sparse case

Theorem (C.—Dembo '18)
Fix H = ([n], E) connected of max degree A > 2. If

1

N—r(H)+e < 1 H)y= ——
<p<l,  K(H)=31r—

then: logP {t(H, G) > (1 + 6)pEl} ~ —cp(5)N?p™ log(1/p).

Remarks:

e Formula for cy(9) was obtained by Bhattacharya, Ganguly, Lubetzky
and Zhao '16, valid down to x(H) = 1/A. Reflects a phase
transition between planted clique and planted hub structures.

e Actually get a better (more complicated) x(H), in particular
k(H) =1/(2A — 1) for H a star.

e In the case of cycles we can sharpen to k(C;) =1/2 + ¢, £ > 4,
(Augeri '18: ¢ > 3).

e Also get lower tails.



Ideas I: Coverings of events by convex bodies

Want to show for Ber(p) vector a € {0,1}? and £ C [0,1]7,

logP(a € L) < —1,(L) + Error, I,(L£) :==inf{I,(x) : x € L}.

1—x

d
X
Ip(x) = Die(pcl|§?) = leog; + (1 —x)log 1

i=1
(Easy) true (with Error=0) for £ = H N[0,1]%, H closed half-space.
Exercise: true (with Error=0) for £ compact and convex.

[cf. Dembo—Zeitouni Ex. 4.5.5.]

* But for UT problems, we have £ = {x : f(x) > t}, non-convex.

*

*

* |dea: Show we can efficiently cover such £ with convex bodies {5;};cz
on which f is essentially constant. Then

logP(ac L) <log » P(acB;) <—minl,(B;)+log|Z
I€ET P
ieT
= = Ip(U;B,’) + log |I|
~ —1,(L) + log |Z. o



Ideas Il: the regularity method

Weighted adjacency matrices Xy := {X = (xj)1<i<j<n,X; € [0,1]}.

Cut norm: || X||g = maxs, TCin] ’ EieS,jeTXU"

Weak regularity lemma (compactness):

For any X € Xy and k € N there exists a partition P of [N] into k parts
and Y € Xy constant on P-blocks such that || X — Y||g < ﬁ.
Counting lemma (continuity): (recall t(H, X) = 7 hom(H, X))

For any graph H=(V,E) and X, Y € Xy,

[t(H, X) — t(H, V)| < [E] - g1 X = Yo

Weak regularity lemma due to Frieze-Kannan'99
(regularity lemma goes back to Szemerédi '70s).

Taken together: Can cover Xy with neighborhoods of bdd number of
graphons on which t(H,-) functionals are essentially constant. (key for

Chatterjee—Varadhan '11.) .
1



Spectral proof of the regularity lemma

(Cf. Frieze-Kannan '99, Szegedy '11, Tao blog '12)

Let X = "I} \jujul spectral decomposition for X € Xy, with
[Xllop = A1(X) = [A2(X)] = - -+ = [An(X)]-

Forany 0 <r<N-1,

N N
(r+ DA (X)P < Z)\f = Z 1X; | < N2

= |/\l’+1(X)| < £V+1'

3

So for r large, X is close in operator norm to a rank-r matrix.
Take parts of P to be mutual refinement of approximate level sets of
uy,...,Ur.
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Spectral regularity lemma for random graphs

Proposition
Let Ne N,K > 1, pe (0,1) with Np > logN, and 1 < r < Np. There

N

exists a partition {0, 1}(2) = |_|j:O &; with the following properties:

(a) logJ < riVlog(3 + )
(b) P{Gnp € &} S exp(—cK2N?p?);
(c) Foreach 1 <j < J, there exists Y; € X of rank at most r such that

1A = Yillop S 72 for all G € &;.
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Spectral regularity lemma for random graphs

Proposition
Let Ne N,K > 1, pe (0,1) with Np > logN, and 1 < r < Np. There

N

exists a partition {0, 1}(2) = |_|j:O &; with the following properties:

(a) logJ < riVlog(3 + )
(b) P{Gnp € &} S exp(—cK2N?p?);
(c) Foreach 1 <j < J, there exists Y; € X of rank at most r such that

||AG - Yj”op S_, % for all G € 5].
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Spectral counting lemma for random graphs

Proposition
Let H = (V, E) with |V| = n, |[E| = m, max degree A.
Let Ne Nand p € (0,1). For K > 1 set
En(K) = {x € Xy : IF < H with homp(X) > KN'VFlplEFl}.
(a) If N=Y/A < p < 1, then for any K > 2,
P{Gn,p € En(K)} $exp ( . C(H)Kl/nszA)
(b) For any X, Y € Xy with X ¢ Ey(K), for all F < H,

X—=Y]o
|hom(F, X) — hom(F, Y)| <, KNlVFIpIEF‘%.
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Open problems and future directions

1. Prove a sharper counting lemma (perhaps using different convex
bodies).

2. p< N~Y/A?
3. Other measures besides G(N, p)?

4. Partition function / structural decomposition for exponential random
graphs (Chatterjee-Diaconis '12, Chatterjee—-Dembo '14,
Eldan—Gross '17).
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Happy birthday, Amir!
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