Large deviations of subgraph counts for sparse Erdős–Rényi graphs

Amir Dembo's birthday conference 2018/12/15

Nick Cook, UCLA

Based on joint work with Amir

CLTs and LDPs: Old and new

Classical: $\{X_i\}_{i\geq 1}$ iid, standardized, finite MGF. $S_N = \sum_{i\leq N} X_i$.

- CLT (de Moivre, Laplace...): $\mathbb{P}\left\{\frac{S_N}{\sqrt{A}} \in [a,b)\right\} \to \gamma([a,b)) \ \forall \ a < b \qquad \qquad \text{(universal)}$
- LDP (Cramér): $\frac{1}{N} \log \mathbb{P} \left\{ \frac{S_N}{N} \in [a, b) \right\} \to -\mathbf{I}(a) \ \forall \ 0 < a < b \le \infty \ (\mathsf{non-universal})$

Extensions to weighted sums $f(X) = \sum_{i \leq N} \alpha_i X_i = \langle \alpha, X \rangle$ (linear functionals on product probability spaces)

Nonlinear functions?

CLTs and LDPs: Old and new

Nonlinear functions:

Example 1: Triangle counts in G(N, p)

Let **A** be $N \times N$ adjacency matrix for $\mathbf{G} \sim G(N, p)$.

$$f(\mathbf{A}) = \operatorname{Tr} \mathbf{A}^3 = \sum_{i,j,k} \mathbf{A}_{ij} \mathbf{A}_{jk} \mathbf{A}_{ki} = 6 \times [\# \text{ of triangles in } \mathbf{G}].$$

Cubic polynomial of $\binom{N}{2}$ iid Ber(p) variables.

$$\mathbb{E} f(\mathbf{A}) \sim N^3 p^3$$

- * CLTs: Ruciński '88, Barbour–Karoński–Ruciński '89 (Stein's method)
- * LDPs: (This talk) Chatterjee–Varadhan '11, Chatterjee–Dembo '14, Eldan '16, C.–Dembo '18, Augeri '18, Kozma–Samotij '18... also Lubetzky–Zhao '12, '14, Bhattacharya–Ganguly–L–Z '16

Example 2: k-AP counts in sparse random sets

Let $S \subset \mathbb{Z}/N\mathbb{Z}$ with $\{\mathbf{1}(i \in S)\}_i$ iid Ber(p),

f(S) the number of 3-term arithmetic progressions in S.

Cf. Chatterjee-Dembo '14, Bhattacharya-Ganguly-Shao-Zhao '16.

Nonlinear large deviations (Chatterjee–Dembo '14)

Let
$$f, h: [0,1]^d \to \mathbb{R} \quad (d \to \infty)$$
.

Large deviations (with $oldsymbol{x} \sim Ber(p)^{\otimes d}$)	Gibbs measure $\nu_h(x) = \frac{1}{Z_h} e^{h(x)}$
$\log \mathbb{P}\left\{f(\mathbf{x}) \geq (1+\delta) \mathbb{E} f(\mathbf{x})\right\} \sim ?$	$\log Z_h = \log \sum_{x \in \{0,1\}^d} e^{h(x)} \sim ?$
Conditional on $\mathbf{x} \in \{f \geq (1+\delta) \mathbb{E} f\}$, what does \mathbf{x} look like?	What does a typical sample $\mathbf{y} \sim \nu_{h}$ look like?

Well understood for linear functionals. If h has low-complexity gradient,

• (C-D '14) Naive mean field approximation is valid:

$$\log Z_h \sim \sup_{x \in [0,1]^d} \{h(x) + H(\mu_x)\}.$$

(Exact for h linear functional.) Also Yan '17, Augeri '18.

• ν_h is approximately a mixture of $e^{o(d)}$ product measures. (\Rightarrow NMFA) (Eldan '16, Eldan-Gross '17, Austin '18).

Examples: triangle counts

Ex 1. (Eldan) Consider $h: \mathcal{G}_N \cong \{0,1\}^{\binom{N}{2}} \to \mathbb{R}$,

$$h(G) = -\frac{1}{N}\operatorname{Tr} A_G^3 = -\frac{6}{N} \times \#\{ \text{ triangles in } G \}.$$

Expect ${\it G} \sim \nu_h$ to be approximately a mixture of $2^N = e^{o(N^2)}$ inhomogeneous Erdős–Rényi graphs (product measures) with bipartite structure.

4

Examples: triangle counts

Ex 2. Let $G \sim G(N, p)$. Conditional on G having extra triangles, i.e.

$$\left\{ \text{ Tr } A_{\boldsymbol{G}}^3 \geq N^3 q^3 \right\}, \quad q > p,$$

how are the edges distributed? A few possibilities:

- (A) As in G(N, q)?
- (B) As in G(N, p) with a small planted clique?
- (C) As in G(N, p) with a small planted hub?
- * For much (but not all!) of 0 fixed, the answer is (A). (Chatterjee–Varadhan '11 + Lubetzky–Zhao '12).
- * Conjecture: For $N^{-1/2} \ll p \ll 1$, $q = (1 + \delta)p$, Answer is (B) or (C), depending on size of δ .

The upper tail for homomorphism counts: dense case

- For $H = ([n], E_H)$, $G = ([N], E_G)$ $t(H, G) = \frac{1}{N^n} \hom(H, G) = \frac{1}{N^n} \sum_{\varphi: [n] \to [N]} \prod_{\{k,l\} \in E} A_G(\varphi(k), \varphi(l))$ $= \mathbb{P} \left\{ \text{ uniform random } \varphi: [n] \to [N] \text{ is edge preserving } \right\}.$
- E.g. $t(C_{\ell}, G) = \frac{1}{N^{\ell}} \operatorname{Tr}(A_G^{\ell})$.
- For p fixed, Chatterjee–Varadhan '11 obtained the LDP for {G(N, p)}_{N≥1}, viewed as measures on the topological space of graphons (see Lovasz's book).
- Since t(H, ·) are continuous in this topology (the counting lemma), this yields LDPs for t(H, G), G ~ G(N, p).

The upper tail for homomorphism counts: sparse case

- Now consider $p = N^{-c}$, $c \in (0,1)$. Graphons are of no help here...
- Chatterjee–Dembo '14: LDP for $t(H, \mathbf{G})$ when

$$N^{-\kappa(H)} \ll p \ll 1, \qquad \kappa(H) = \frac{c}{\Delta_H |E_H|}.$$

$$(\kappa(C_3) = \frac{1}{41} + \varepsilon)$$
. Eldan '16: $\kappa(C_3) = \frac{1}{18} + \varepsilon$.

Theorem (C.-Dembo '18)

Fix H = ([n], E) connected of max degree $\Delta \geq 2$. If

$$N^{-\kappa(H)} \ll p \ll 1, \qquad \kappa(H) = \frac{1}{3\Delta - 2},$$

then: $\log \mathbb{P}\left\{t(H, \mathbf{G}) \geq (1+\delta)p^{|E|}\right\} \sim -c_H(\delta)N^2p^{\Delta}\log(1/p).$

The upper tail for homomorphism counts: sparse case

Theorem (C.-Dembo '18)

Fix H = ([n], E) connected of max degree $\Delta \geq 2$. If

$$N^{-\kappa(H)+\varepsilon} \le p \ll 1, \qquad \kappa(H) = \frac{1}{3\Delta - 2},$$

then: $\log \mathbb{P}\left\{t(H, \mathbf{G}) \geq (1+\delta)p^{|E|}\right\} \sim -c_H(\delta)N^2p^{\Delta}\log(1/p).$

Remarks:

- Formula for $c_H(\delta)$ was obtained by Bhattacharya, Ganguly, Lubetzky and Zhao '16, valid down to $\kappa(H)=1/\Delta$. Reflects a phase transition between planted clique and planted hub structures.
- Actually get a better (more complicated) $\kappa(H)$, in particular $\kappa(H) = 1/(2\Delta 1)$ for H a star.
- In the case of cycles we can sharpen to $\kappa(C_{\ell}) = 1/2 + \varepsilon$, $\ell \geq 4$, (Augeri '18: $\ell \geq 3$).
- Also get lower tails.

Ideas I: Coverings of events by convex bodies

Want to show for Ber(p) vector $\textbf{\textit{a}} \in \{0,1\}^d$ and $\mathcal{L} \subseteq [0,1]^d$,

$$\begin{split} \log \mathbb{P}(\pmb{a} \in \mathcal{L}) &\leq -\operatorname{I}_p(\mathcal{L}) + \textit{Error}, \qquad \operatorname{I}_p(\mathcal{L}) := \inf\{\operatorname{I}_p(x) : x \in \mathcal{L}\}. \\ I_p(x) &= D_{\mathit{KL}}(\mu_x \| \mu_p^{\otimes d}) = \sum_{i=1}^d x \log \frac{x}{p} + (1-x) \log \frac{1-x}{1-p}. \end{split}$$

- * (Easy) true (with Error=0) for $\mathcal{L} = \mathcal{H} \cap [0,1]^d$, \mathcal{H} closed half-space.
- * **Exercise:** true (with Error=0) for \mathcal{L} compact and convex. [cf. Dembo–Zeitouni Ex. 4.5.5.]
- * But for UT problems, we have $\mathcal{L} = \{x : f(x) \ge t\}$, non-convex.
- * Idea: Show we can efficiently cover such $\mathcal L$ with convex bodies $\{\mathcal B_i\}_{i\in\mathcal I}$ on which f is essentially constant. Then

$$egin{aligned} \log \mathbb{P}(m{a} \in \mathcal{L}) & \leq \log \sum_{i \in \mathcal{I}} \mathbb{P}(m{a} \in \mathcal{B}_i) \leq -\min_{i \in \mathcal{I}} \mathrm{I}_p(\mathcal{B}_i) + \log |\mathcal{I}| \ & = -\mathrm{I}_p(\cup_i \mathcal{B}_i) + \log |\mathcal{I}| \ & pprox - \mathrm{I}_p(\mathcal{L}) + \log |\mathcal{I}|. \end{aligned}$$

Ideas II: the regularity method

Weighted adjacency matrices $\mathcal{X}_N := \{X = (x_{ij})_{1 \leq i < j \leq N}, x_{ij} \in [0,1]\}$. Cut norm: $\|X\|_{\square} = \max_{S,T \subseteq [N]} \left| \sum_{i \in S, j \in T} x_{ij} \right|$.

Weak regularity lemma (compactness):

For any $X \in \mathcal{X}_N$ and $k \in \mathbb{N}$ there exists a partition \mathcal{P} of [N] into k parts and $Y \in \mathcal{X}_N$ constant on \mathcal{P} -blocks such that $\|X - Y\|_{\square} \leq \frac{2}{\sqrt{\log k}}$.

Counting lemma (continuity): (recall $t(H,X) = \frac{1}{N^{|V|}} hom(H,X)$) For any graph H = (V,E) and $X,Y \in \mathcal{X}_N$, $|t(H,X) - t(H,Y)| \le |E| \cdot \frac{1}{N^2} ||X - Y||_{\square}$.

Weak regularity lemma due to Frieze-Kannan'99 (regularity lemma goes back to Szemerédi '70s).

Taken together: Can cover \mathcal{X}_N with neighborhoods of bdd number of graphons on which $t(H,\cdot)$ functionals are essentially constant. (key for Chatterjee–Varadhan '11.)

Spectral proof of the regularity lemma

(Cf. Frieze-Kannan '99, Szegedy '11, Tao blog '12)

Let $X = \sum_{j=1}^N \lambda_j u_j u_j^\mathsf{T}$ spectral decomposition for $X \in \mathcal{X}_N$, with $\|X\|_{\mathrm{op}} = \lambda_1(X) \ge |\lambda_2(X)| \ge \cdots \ge |\lambda_N(X)|$.

For any $0 \le r \le N-1$,

$$(r+1)|\lambda_{r+1}(X)|^2 \leq \sum_{j=1}^N \lambda_j^2 = \sum_{i,j=1}^N |X_{ij}|^2 \leq N^2.$$

$$\Rightarrow |\lambda_{r+1}(X)| \leq \frac{N}{\sqrt{r+1}}.$$

So for r large, X is close in operator norm to a rank-r matrix. Take parts of $\mathcal P$ to be mutual refinement of approximate level sets of u_1,\ldots,u_r .

Spectral regularity lemma for random graphs

Proposition

Let $N \in \mathbb{N}$, $K \ge 1$, $p \in (0,1)$ with $Np \ge \log N$, and $1 \le r \le Np$. There exists a partition $\{0,1\}^{\binom{N}{2}} = \bigsqcup_{i=0}^J \mathcal{E}_i$ with the following properties:

- (a) $\log J \lesssim rN \log(3 + \frac{r}{Kp})$;
- (b) $\mathbb{P}\{\boldsymbol{G}_{N,p} \in \mathcal{E}_0\} \lesssim \exp(-cK^2N^2p^2);$
- (c) For each $1 \leq j \leq J$, there exists $Y_j \in \mathcal{X}_N$ of rank at most r such that $\|A_G Y_j\|_{\text{op}} \lesssim \frac{\kappa_{Np}}{\sqrt{r}}$ for all $G \in \mathcal{E}_j$.

Spectral regularity lemma for random graphs

Proposition

Let $N \in \mathbb{N}$, $K \ge 1$, $p \in (0,1)$ with $Np \ge \log N$, and $1 \le r \le Np$. There exists a partition $\{0,1\}^{\binom{N}{2}} = \bigsqcup_{i=0}^J \mathcal{E}_i$ with the following properties:

- (a) $\log J \lesssim rN \log(3 + \frac{r}{Kp})$;
- (b) $\mathbb{P}\{\boldsymbol{G}_{N,p} \in \mathcal{E}_0\} \lesssim \exp(-cK^2N^2p^2);$
- (c) For each $1 \leq j \leq J$, there exists $Y_j \in \mathcal{X}_N$ of rank at most r such that $\|A_G Y_j\|_{\text{op}} \lesssim \frac{\kappa_{Np}}{\sqrt{r}}$ for all $G \in \mathcal{E}_j$.

Spectral counting lemma for random graphs

Proposition

Let H = (V, E) with |V| = n, |E| = m, max degree Δ . Let $N \in \mathbb{N}$ and $p \in (0, 1)$. For $K \ge 1$ set

$$\mathcal{E}_H(K) = \Big\{ X \in \mathcal{X}_N : \exists F \leq H \text{ with } \mathsf{hom}_F(X) > KN^{|V_F|} p^{|E_F|} \Big\}.$$

(a) If $N^{-1/\Delta} , then for any <math>K \geq 2$,

$$\mathbb{P}\left\{ \boldsymbol{G}_{N,p} \in \mathcal{E}_{H}(K) \right\} \lesssim_{H} \exp\Big(-c(H)K^{1/n}N^{2}p^{\Delta}\Big).$$

(b) For any $X, Y \in \mathcal{X}_N$ with $X \notin \mathcal{E}_H(K)$, for all $F \leq H$,

$$|\operatorname{\mathsf{hom}}(F,X) - \operatorname{\mathsf{hom}}(F,Y)| \lesssim_H K N^{|V_F|} p^{|E_F|} \frac{\|X - Y\|_{\operatorname{op}}}{Np^{\Delta}}.$$

Open problems and future directions

- 1. Prove a sharper counting lemma (perhaps using different convex bodies).
- 2. $p \ll N^{-1/\Delta}$?
- 3. Other measures besides G(N, p)?
- Partition function / structural decomposition for exponential random graphs (Chatterjee–Diaconis '12, Chatterjee–Dembo '14, Eldan–Gross '17).

Happy birthday, Amir!