Large deviations for sparse random graphs

CIRM, Luminy

2019/04/19

Nicholas Cook, Stanford University
Based on joint work with Amir Dembo

Universality for typical behavior: Examples

- CLT: for X_{1}, X_{2}, \ldots iid, $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}=1$,

$$
\forall a<b, \quad \mathbb{P}\left\{\frac{x_{1}+\cdots+x_{N}}{\sqrt{N}} \in[a, b]\right\} \longrightarrow \gamma([a, b]) \quad \text { (universal). }
$$

- Let $\boldsymbol{A}=\left(a_{i j}\right)_{i, j=1}^{N}$ adjacency matrix for the Erdős-Rényi graph $G(N, p)$ with $0<p \ll 1$, eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}$.

λ_{1} is asymptotically Gaussian.
For $p \gg N^{-2 / 3}: \quad \lambda_{2},-\lambda_{N}$ follow the Tracy-Widom law [Lee-Schnelli '16]. (But Gaussian for $N^{-7 / 9} \ll p \ll N^{-2 / 3}$ [Huang-Landon-Yau '17].)

Large deviations: Beyond universality

CLT: for X_{1}, X_{2}, \ldots iid, $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}=1$,

$$
\forall a<b, \quad \mathbb{P}\left\{\frac{x_{1}+\cdots+x_{N}}{\sqrt{N}} \in[a, b]\right\} \longrightarrow \gamma([a, b]) \quad \text { (universal). }
$$

Compare Cramér's Large deviations principle (LDP):

$$
\forall a<b, \quad \frac{1}{N} \log \mathbb{P}\left\{\frac{x_{1}+\cdots+x_{N}}{N} \in[a, b]\right\} \longrightarrow-\inf _{x \in[a, b]} J(x),
$$

where J is the non-universal rate function depending strongly on the law of X_{1} (particularly its tail behavior).

Rademacher
$\frac{1+x}{2} \log (1+x)+\frac{1-x}{2} \log (1-x)$

Gaussian
$\frac{x^{2}}{2}$

Nonlinear large deviations (Chatterjee-Dembo '14)

How about nonlinear functionals?
Example: Extreme eigenvalues of random matrices / random graphs.

In this talk we focus on low-degree polynomials of Bernoulli variables.
(Tails for eigenvalues will be under the hood.)
Note we consider outliers at scale $N p$ (for LDP at scale of the bulk cf. recent work of Guionnet-Husson).

Subgraph counts in $G(N, p)$

- Let $\boldsymbol{G} \sim G(N, p)$ be an Erdős-Rényi graph on vertices $[N]=\{1, \ldots, N\}$
- Number of triangles in $\boldsymbol{G}: \quad \mathcal{N}_{\Delta}(\boldsymbol{G})=\sum_{\{i, j, k\} \subset[N]} a_{i j} a_{j k} a_{i k}$
(recall the adjacency matrix $\boldsymbol{A}=\left(a_{i j}\right)_{i, j=1}^{N}$ with $a_{i j}=\mathbf{1}_{\{i, j\}}$ is an edge). $\mathbb{E} \mathcal{N}_{\Delta}(\boldsymbol{G})=\binom{N}{3} p^{3}$.
- Question: Conditional on G having extra triangles, i.e. $\left\{\mathcal{N}_{\Delta}(\boldsymbol{G}) \geq\binom{ N}{3} q^{3}\right\}$ for some $q>p$, how are the edges distributed? A few possibilities:
(A) As in $G(N, q)$?
(B) As in $G(N, p)$ with a small planted clique? (C) As in $G(N, p)$ with a small planted hub?

Answer is (A) for much (but not all!) of $0<p<q<1$ fixed. [Chatterjee-Varadhan '11]+[Lubetzky-Zhao '12].

Subgraph counts in $G(N, p)$

Conjecture: Let H have max degree D. For $N^{-1 / D} \ll p \ll 1$, depending on the size of δ,
$\boldsymbol{G} \mid\left\{\mathcal{N}_{H}(\boldsymbol{G}) \geq(1+\delta) \mathbb{E} \mathcal{N}_{H}(\boldsymbol{G})\right\} \approx G(N, p)+$ planted clique or hub.

The "infamous" upper tail for triangle counts [Janson-Ruciński '02]

- Upper tail up to constant factors in the exponent:

$$
\mathbb{P}\left\{\mathcal{N}_{\Delta}(\boldsymbol{G}) \geq(1+\delta) \mathbb{E} \mathcal{N}_{\Delta}(\boldsymbol{G})\right\}=p^{\Theta_{\delta}\left(N^{2} p^{2}\right)}, \quad p \geq(\log N) / N
$$

[Chatterjee '12], [DeMarco-Kahn '12]

- Recent work finds the leading exponential order:

$$
\mathbb{P}\left\{\mathcal{N}_{\Delta}(\boldsymbol{G}) \geq(1+\delta) \mathbb{E} \mathcal{N}_{\Delta}(\boldsymbol{G})\right\}=p^{(1+o(1)) \min \left\{\frac{\delta^{2} / 3}{2}, \frac{\delta}{3}\right\} N^{2} p^{2}}
$$

(matching probabilities for planted clique or hub of appropriate size) for $N^{-\kappa} \ll p \ll 1$, with

$$
\begin{array}{ll}
* \kappa=\frac{1}{41}-\epsilon & \text { [Chatterjee-Dembo '14] }+ \text { [Lubetzky-Zhao '14] } \\
* \kappa=\frac{1}{18}-\epsilon & \text { [Aldan '16] } \\
* \kappa=\frac{1}{3} & \text { [C.-Dembo '18] (and } \frac{1}{2}-\epsilon \text { for cycles of length } \ell \geq 4 \text {). } \\
* \kappa=\frac{1}{2}-\epsilon & \text { [Auger '18] for cycles of length } \ell \geq 3 . \\
* \kappa=1-\epsilon & \text { [Harel-Mousset-Samotij '19 (yesterday)]. }
\end{array}
$$

- How about general subgraphs?

Main result: Upper tail for general subgraph counts

- Let $H=(V, E)$ connected of max degree D, and assume $N^{-\kappa(H)} \ll p \ll 1$ for some $\kappa(H) \in(0,1)$.
- [Chatterjee-Dembo '14] + [Bhattacharya-Ganguly-Lubetzky-Zhao '16]:

$$
\mathbb{P}\left\{\mathcal{N}_{H}(\boldsymbol{G}) \geq(1+\delta) \mathbb{E} \mathcal{N}_{H}(\boldsymbol{G})\right\}=p^{(1+o(1)) c_{H}(\delta) N^{2} p^{D}}
$$

matching the probability of a planted clique or hub up to sub-exponential factors, assuming $\kappa(H)=\frac{c}{D|E|}$.
(Formula for $c_{H}(\delta)$ was obtained by [BGLZ '16] as solution to LDP variational problem, valid down to $\kappa(H)=1 / D$.)

- [Eldan '16] $+\left[\right.$ BGLZ '16]: can take $\kappa(H)=\frac{1}{6|E|}-\epsilon$.
- [C.-Dembo '18]: $\kappa(H)=\frac{1}{3 D-2}-\epsilon$.

Main result: Upper tail for general subgraph counts

Theorem (C.-Dembo '18)

Fix $H=(V, E)$ connected of max degree $D \geq 2$. If $N^{-\frac{1}{3 D-2}+\epsilon} \leq p \ll 1$ then

$$
\mathbb{P}\left\{\mathcal{N}_{H}(\boldsymbol{G}) \geq(1+\delta) \mathbb{E} \mathcal{N}_{H}(\boldsymbol{G})\right\}=p^{(1+o(1)) c_{H}(\delta) N^{2} p^{D}} .
$$

- This is currently the best result for general H, but see * [C-D '18], [Auger '18] for sharpening in case of cycles (exploiting relationship to the spectrum of A);
* very recent improvement to $\kappa(H)=\frac{2}{D}-\epsilon$ for H non-bipartite D-regular by [Harel-Mousset-Samotij '19].
- We actually get a sharper $\kappa(H)$ (more complicated formula), in particular $\kappa(H)=1 /(2 D-1)$ for H a star.
- We also get:
* lower tails (reduction to variational problem - can solve only for Sidorenko graphs);
* upper tails for $\lambda_{1}, \lambda_{2},-\lambda_{N}$ (together with subsequent work by [Bhattacharya-Ganguly '18] solving the LDP variational problem).

Further motivation: Exponential random graphs (ERGs)

- Edge-triangle model (popular in sociology literature): for $\alpha, \beta \in \mathbb{R}$,

$$
\mathbb{P}(\boldsymbol{G}=G)=\frac{1}{Z_{N}(\alpha, \beta)} e^{\alpha \mathcal{N}_{e}(G)+\beta \frac{1}{N} \mathcal{N}_{\Delta}(G)}, \quad G \in \mathcal{G}_{N}
$$

- Estimates for upper tails of subgraph counts $\mathcal{N}_{H}\left(\boldsymbol{G}_{N, p}\right)$ are closely related to estimates for the partition function (Varadhan's Lemma and Bryc's Theorem).

Dense case (α, β fixed): [Bhamidi-Bressler-Sly '08], [Chatterjee-Diaconis '11], [Lubetzky-Zhao '12].

- In progress: Apply our tools to get quantitative estimates on $Z_{N}(\alpha, \beta)$ when α, β can grow with N, allowing for sparse ERGs. (following [Chatterjee-Dembo '14], [Eldan '16], [Eldan-Gross '17].)
- Problems with ERGs:
* For $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}_{+}$fixed, \boldsymbol{G} looks like an Erdős-Rényi graph!
* Degeneracy: for some ranges of $\alpha, \beta, \boldsymbol{G}$ is close to empty or full.

Previous approaches to upper tails

- [Chatterjee-Dembo '14]: large deviations for nonlinear functions $f:\{0,1\}^{d} \rightarrow \mathbb{R}$ through the study of Gibbs measures μ with density $\mu(\{x\}) \propto e^{h(x)}$ for some Hamiltonian $h:\{0,1\}^{d} \rightarrow \mathbb{R}$.
- Taking $e^{h(x)}$ as a "smooth" approximation to the indicator function $1_{f(x) \geq t}$, recover estimates on $\mathbb{P}(f(X) \geq t)$ from estimates on the partition function $Z=\sum_{x \in\{0,1\}^{d}} e^{h(x)}$.
- C-D obtain conditions for validity of the naïve mean field approximation:

$$
\log Z=\sup _{\nu \in M_{1}\left(\{0,1\}^{d}\right)} \int h d \nu-H(\nu \| \mu) \approx \sup _{\substack{\nu \in M_{1}\left(\{0,1\}^{d}\right) \\ \text { product measures }}} \int h d \nu-H(\nu \| \mu)
$$

where $H(\nu \| \mu)$ is the relative entropy.

- Extended and refined by [Yan '15], [Eldan '16], [Augeri '18], [Austin '18].
- Disadvantage: We incur errors in the passage from indicator functions to smooth approximations. Leads to results in sub-optimal range of sparsity.

Dense case (Chatterjee-Varadhan '11)

- For a sequence of probability measures μ_{N} on a common topological space \mathcal{X}, large deviations principle (LDP) yields asymptotics of form

$$
\mu_{N}(\mathcal{E}) \approx \exp \left(-v_{N} \inf _{x \in \mathcal{E}} J(x)\right), \quad \mathcal{E} \subseteq \mathcal{X}
$$

for a rate function J and speed v_{N}.

- In dense case (p fixed $), \mathrm{C}-\mathrm{V}$ get an LDP for $\mu_{N}(\cdot)=\mathbb{P}(\boldsymbol{G} \in \cdot)$. What does it mean? μ_{N} live on separate spaces $\mathcal{G}_{N} \cong\{0,1\}\binom{N}{2} \ldots$
- The space of graphons provides a "completion" of $\bigcup_{N \geq 1} \mathcal{G}_{N}$:

$$
\mathcal{W}:=\left\{g:[0,1]^{2} \rightarrow[0,1] \text { symmetric, Lebesgue measurable }\right\}
$$

equipped with a topology coming from the cut-norm:

$$
\|f\|_{\square}:=\sup _{S, T \subseteq[0,1]}\left|\int_{S \times T} f(x, y) d x d y\right|
$$

- Graphons are limits of rescaled adjacency matrices, and $\|\cdot\|_{\square}$ extends the matrix cut-norm $\|M\|_{\square}=\max _{U, V \subseteq[N]}\left|\sum_{(i, j) \in U \times V} M_{i j}\right|$.

Dense case (Chatterjee-Varadhan '11)

Identify a finite graph $G \in \mathcal{G}_{N}$ with $g \in \mathcal{W}$ via its adjacency matrix A, putting $g(x, y):=A_{\left\lfloor N_{x}\right\rfloor,\left\lfloor N_{y}\right\rfloor}$. General $g \in \mathcal{W}$ is like a "continuum adjacency matrix".

Dense case (Chatterjee-Varadhan '11)

Graphon space provides a topological reformulation of the classic regularity method from extremal graph theory.

Key fact 1: The space of graphons with cut-norm topology is compact (\approx Szemerédi's regularity lemma).

Theorem (Chatterjee-Varadhan)

Fix $p \in(0,1)$ and for $N \geq 1$ let $\boldsymbol{G}_{N} \sim G(N, p)$. The sequence of probability measures $\mu_{N}(\cdot)=\mathbb{P}\left(\boldsymbol{G}_{N} \in \cdot\right)$ on the topological space of graphons satisfies an LDP (of speed N^{2}, with explicit rate function).

Key fact 2: the subgraph counting functions $\mathcal{N}_{H}(G)$, suitably extended to graphons, are continuous in the cut-norm topology.
(\approx the counting lemma).
Corollary: upper tails for subgraph counts $\mathcal{N}_{H}(\boldsymbol{G})$
(just apply the LDP to super-level sets).
Moral: the cut-norm topology is the right topology if you're interested in subgraph counts.

Sparse case: Sharpening the regularity method

- Regularity and counting lemmas aren't accurate enough to analyze sparse graphs (and unfortunately they're sharp).
- Existing sparse graph limit theories, such as L^{p}-graphons [Borgs-Chayes-Cohn-Zhao '14], lack a strong enough counting lemma.
- We are able to establish drastically improved regularity and counting lemmas after cutting out appropriate small "bad" events (involving outlier eigenvalues).

$2(N p)^{\frac{1}{2}}$

Spectral regularity lemma for random graphs

Write $\mathcal{A}_{N}=\{0,1\}_{\binom{N}{2}}$ for the space of adjacency matrices and $\mathcal{X}_{N}=[0,1]^{\binom{N}{2}}$ for its convex hull (weighted adjacency matrices).

Proposition (Quantitative compactness for \mathcal{A}_{N})
Let $N \in \mathbb{N}, K \geq 1, p \in(0,1)$ with $N p \geq \log N$, and $1 \leq R \leq N p$. There exists a partition $\mathcal{A}_{N}=\bigsqcup_{j=0}^{j} \mathcal{E}_{j}$ with the following properties:
(a) $\log J \lesssim R N \log \left(3+\frac{R}{K p}\right)$;
(b) $\mathbb{P}\left\{\boldsymbol{A}_{N, p} \in \mathcal{E}_{0}\right\} \lesssim \exp \left(-c K^{2} N^{2} p^{2}\right)$;
(c) For each $1 \leq j \leq J$, there exists $Y_{j} \in \mathcal{X}_{N}$ of rank at most R such that $\left\|A-Y_{j}\right\|_{\text {op }} \lesssim \frac{K N_{p}}{\sqrt{R}}$ for all $A \in \mathcal{E}_{j}$.

Spectral counting lemma for random graphs

Proposition (Lipschitz continuity for homomorphism counts)

Let $H=(V, E)$ of max degree D.
Let $N \in \mathbb{N}$ and $p \in(0,1)$. For $K \geq 1$ set

$$
\mathcal{E}_{H}(K)=\left\{X \in \mathcal{X}_{N}: \exists F \leq H \text { with } \operatorname{hom}(F, X)>K N^{\left|V_{F}\right|} p^{\left|E_{F}\right|}\right\} .
$$

(a) If $N^{-1 / D}<p<1$, then for any $K \geq 2$,

$$
\mathbb{P}\left\{\boldsymbol{A}_{N, p} \in \mathcal{E}_{H}(K)\right\} \lesssim_{H} \exp \left(-c(H) K^{1 /|V|} N^{2} p^{D}\right) .
$$

(b) For any $X, Y \in \mathcal{X}_{N}$ with $X \notin \mathcal{E}_{H}(K)$, for all $F \leq H$,

$$
|\operatorname{hom}(F, X)-\operatorname{hom}(F, Y)| \lesssim_{H} K N^{\left|V_{F}\right|} p^{\left|E_{F}\right|} \frac{\|X-Y\|_{\text {op }}}{N p^{D}} .
$$

Future directions

- Could possibly push down to $p \gg N^{-1 / D}$ with an improved counting lemma (our regularity lemma is essentially optimal).
- To take $p \ll N^{-1 / D}$ would require better understanding of the geometry of level sets for subgraph counting functionals (recently accomplished for case of H non-bipartite and D-regular by [Harel-Mousset-Samotij '19]).
- Improved estimates for the partition function of sparse Exponential Random Graphs of various types.
- More general classes of random graphs, e.g. Stochastic Block Model.
- Random geometric graphs? [Chatterjee-Harel '14] got LDP for edge counts.
* Other applications of new regularity and counting lemmas in random graph theory??

Thanks for your attention!

