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Universality for typical behavior: Examples

• CLT: for X1,X2, . . . iid, EX1 = 0, EX
2
1 = 1,

8 a < b, P
n

X1+···+XNp
N

2 [a, b]
o
�! �([a, b]) (universal).

• Let A = (aij)
N

i,j=1 adjacency matrix for the Erdős–Rényi graph G (N, p)

with 0 < p ⌧ 1, eigenvalues �1 � �2 � · · · � �N .

�1 is asymptotically Gaussian.

For p � N
�2/3

: �2,��N follow the Tracy–Widom law [Lee–Schnelli ’16].

(But Gaussian for N
�7/9 ⌧ p ⌧ N

�2/3
[Huang–Landon–Yau ’17].) 1



Large deviations: Beyond universality

CLT: for X1,X2, . . . iid, EX1 = 0, EX
2
1 = 1,

8 a < b, P
n

X1+···+XNp
N

2 [a, b]
o
�! �([a, b]) (universal).

Compare Cramér’s Large deviations principle (LDP):

8 a < b, 1
N
logP

n
X1+···+XN

N
2 [a, b]

o
�! � infx2[a,b] J(x),

where J is the non-universal rate function depending strongly on the law

of X1 (particularly its tail behavior).

Rademacher Gaussian

1+x

2 log(1 + x) +
1�x

2 log(1� x)
x
2

2
2



Nonlinear large deviations (Chatterjee–Dembo ’14)

How about nonlinear functionals?

Example: Extreme eigenvalues of random matrices / random graphs.

In this talk we focus on low-degree polynomials of Bernoulli variables.

(Tails for eigenvalues will be under the hood.)

Note we consider outliers at scale Np (for LDP at scale of the bulk cf.

recent work of Guionnet–Husson).
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Subgraph counts in G (N , p)

• Let G ⇠ G (N, p) be an Erdős–Rényi graph on vertices [N] = {1, . . . ,N}

• Number of triangles in G : N�(G ) =
P

{i,j,k}⇢[N] aijajkaik

(recall the adjacency matrix A = (aij)
N

i,j=1 with aij = 1{i,j} is an edge).

EN�(G ) =
�
N

3

�
p
3
.

• Question: Conditional on G having extra triangles, i.e.�
N�(G ) �

�
N

3

�
q
3
 
for some q > p, how are the edges distributed?

A few possibilities:

(A) As in G (N, q)?

(B) As in G (N, p) with a small planted clique?

(C) As in G (N, p) with a small planted hub?

Answer is (A) for much (but not all!) of

0 < p < q < 1 fixed. [Chatterjee–Varadhan

’11]+[Lubetzky–Zhao ’12].
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Subgraph counts in G (N , p)

Conjecture: Let H have max degree D. For N
�1/D ⌧ p ⌧ 1,

depending on the size of �,

G
���
n
NH(G) � (1 + �)ENH(G)

o
⇡ G(N, p) + planted clique or hub.
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The “infamous” upper tail for triangle counts [Janson–Ruciński ’02]

• Upper tail up to constant factors in the exponent:

P{N�(G ) � (1 + �)EN�(G )} = p
⇥�(N

2
p
2)
, p � (logN)/N.

[Chatterjee ’12], [DeMarco–Kahn ’12]

• Recent work finds the leading exponential order:

P{N�(G ) � (1 + �)EN�(G )} = p
(1+o(1)) min{ �2/3

2 , �3 }N
2
p
2

(matching probabilities for planted clique or hub of appropriate size) for

N
� ⌧ p ⌧ 1, with

⇤  =
1
41 � ✏ [Chatterjee–Dembo ’14] + [Lubetzky–Zhao ’14]

⇤  =
1
18 � ✏ [Eldan ’16]

⇤  =
1
3 [C.–Dembo ’18] (and

1
2 � ✏ for cycles of length ` � 4).

⇤  =
1
2 � ✏ [Augeri ’18] for cycles of length ` � 3.

⇤  = 1� ✏ [Harel–Mousset–Samotij ’19 (yesterday)].

• How about general subgraphs? 7



Main result: Upper tail for general subgraph counts

• Let H = (V ,E ) connected of max degree D, and assume

N
�(H) ⌧ p ⌧ 1 for some (H) 2 (0, 1).

• [Chatterjee–Dembo ’14] + [Bhattacharya–Ganguly–Lubetzky–Zhao ’16]:

P
�
NH(G ) � (1 + �)ENH(G )

 
= p

(1+o(1))cH (�)N
2
p
D

matching the probability of a planted clique or hub up to

sub-exponential factors, assuming (H) =
c

D|E | .

(Formula for cH(�) was obtained by [BGLZ ’16] as solution to LDP

variational problem, valid down to (H) = 1/D.)

• [Eldan ’16] + [BGLZ ’16]: can take (H) =
1

6|E | � ✏.

• [C.–Dembo ’18]: (H) =
1

3D�2 � ✏.
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Main result: Upper tail for general subgraph counts

Theorem (C.–Dembo ’18)

Fix H = (V ,E ) connected of max degree D � 2. If N
� 1

3D�2+✏  p ⌧ 1

then

P
�
NH(G ) � (1 + �)ENH(G )

 
= p

(1+o(1))cH (�)N
2
p
D

.

• This is currently the best result for general H, but see

⇤ [C–D ’18], [Augeri ’18] for sharpening in case of cycles (exploiting

relationship to the spectrum of A);
⇤ very recent improvement to (H) =

2
D
� ✏ for H non-bipartite

D-regular by [Harel–Mousset–Samotij ’19].

• We actually get a sharper (H) (more complicated formula), in

particular (H) = 1/(2D � 1) for H a star.

• We also get:

⇤ lower tails (reduction to variational problem – can solve only for

Sidorenko graphs);

⇤ upper tails for �1,�2,��N (together with subsequent work by

[Bhattacharya–Ganguly ’18] solving the LDP variational problem). 9



Further motivation: Exponential random graphs (ERGs)

• Edge-triangle model (popular in sociology literature): for ↵,� 2 R,

P(G = G ) =
1

ZN(↵,�)
e
↵Ne(G)+� 1

N
N�(G), G 2 GN .

• Estimates for upper tails of subgraph counts NH(GN,p) are closely

related to estimates for the partition function (Varadhan’s Lemma and

Bryc’s Theorem).

Dense case (↵,� fixed): [Bhamidi–Bressler–Sly ’08], [Chatterjee–Diaconis ’11],

[Lubetzky–Zhao ’12].

• In progress: Apply our tools to get quantitative estimates on ZN(↵,�)

when ↵,� can grow with N, allowing for sparse ERGs.

(following [Chatterjee–Dembo ’14], [Eldan ’16], [Eldan–Gross ’17].)

• Problems with ERGs:

⇤ For (↵,�) 2 R⇥ R+ fixed, G looks like an Erdős–Rényi graph!

⇤ Degeneracy: for some ranges of ↵,�, G is close to empty or full. 10



Previous approaches to upper tails

• [Chatterjee–Dembo ’14]: large deviations for nonlinear functions

f : {0, 1}d ! R through the study of Gibbs measures µ with density

µ({x}) / e
h(x)

for some Hamiltonian h : {0, 1}d ! R.

• Taking e
h(x)

as a “smooth” approximation to the indicator function

1f (x)�t , recover estimates on P(f (X ) � t) from estimates on the

partition function Z =
P

x2{0,1}d e
h(x)

.

• C–D obtain conditions for validity of the näıve mean field approximation:

logZ = sup

⌫2M1({0,1}d )

Z
hd⌫ � H(⌫kµ) ⇡ sup

⌫2M1({0,1}d )
product measures

Z
hd⌫ � H(⌫kµ)

where H(⌫kµ) is the relative entropy.

• Extended and refined by [Yan ’15], [Eldan ’16], [Augeri ’18], [Austin ’18].

• Disadvantage: We incur errors in the passage from indicator functions to

smooth approximations. Leads to results in sub-optimal range of sparsity.
11



Dense case (Chatterjee–Varadhan ’11)

• For a sequence of probability measures µN on a common topological

space X , large deviations principle (LDP) yields asymptotics of form

µN(E) ⇡ exp
�
� vN infx2E J(x)

�
, E ✓ X ,

for a rate function J and speed vN .

• In dense case (p fixed), C–V get an LDP for µN(·) = P(G 2 ·).
What does it mean? µN live on separate spaces GN

⇠= {0, 1}(
N

2)...

• The space of graphons provides a “completion” of
S

N�1 GN :

W := {g : [0, 1]2 ! [0, 1] symmetric, Lebesgue measurable},

equipped with a topology coming from the cut-norm:

kf k⇤ := sup
S,T✓[0,1]

����
R
S⇥T

f (x , y)dxdy

����.

• Graphons are limits of rescaled adjacency matrices, and k · k⇤ extends the

matrix cut-norm kMk⇤ = maxU,V✓[N]

��P
(i,j)2U⇥V

Mij

��. 12



Dense case (Chatterjee–Varadhan ’11)

Identify a finite graph G 2 GN with g 2 W via its adjacency matrix A, putting

g(x , y) := AbNxc,bNyc. General g 2 W is like a “continuum adjacency matrix”.
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Dense case (Chatterjee–Varadhan ’11)

Graphon space provides a topological reformulation of the classic

regularity method from extremal graph theory.

Key fact 1: The space of graphons with cut-norm topology is compact

(⇡ Szemerédi’s regularity lemma).

Theorem (Chatterjee–Varadhan)

Fix p 2 (0, 1) and for N � 1 let GN ⇠ G (N, p). The sequence of

probability measures µN(·) = P(GN 2 ·) on the topological space of

graphons satisfies an LDP (of speed N
2
, with explicit rate function).

Key fact 2: the subgraph counting functions NH(G ), suitably extended

to graphons, are continuous in the cut-norm topology.

(⇡ the counting lemma).

Corollary: upper tails for subgraph counts NH(G )

(just apply the LDP to super-level sets).

Moral: the cut-norm topology is the right topology if you’re interested in

subgraph counts.
14



Sparse case: Sharpening the regularity method

• Regularity and counting lemmas aren’t accurate enough to analyze sparse

graphs (and unfortunately they’re sharp).

• Existing sparse graph limit theories, such as L
p
-graphons

[Borgs–Chayes–Cohn–Zhao ’14], lack a strong enough counting lemma.

• We are able to establish drastically improved regularity and counting

lemmas after cutting out appropriate small “bad” events (involving

outlier eigenvalues).
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Spectral regularity lemma for random graphs

Write AN = {0, 1}(
N

2) for the space of adjacency matrices

and XN = [0, 1](
N

2) for its convex hull (weighted adjacency matrices).

Proposition (Quantitative compactness for AN)

Let N 2 N,K � 1, p 2 (0, 1) with Np � logN, and 1  R  Np. There

exists a partition AN =
F

J

j=0 Ej with the following properties:

(a) log J . RN log(3 + R

Kp
);

(b) P{AN,p 2 E0} . exp(�cK
2
N

2
p
2);

(c) For each 1  j  J, there exists Yj 2 XN of rank at most R such

that kA� Yjkop . KNpp
R

for all A 2 Ej .
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Spectral counting lemma for random graphs

Proposition (Lipschitz continuity for homomorphism counts)

Let H = (V ,E ) of max degree D.

Let N 2 N and p 2 (0, 1). For K � 1 set

EH(K ) =
n
X 2 XN : 9F  H with hom(F ,X ) > KN

|VF |p|EF |
o
.

(a) If N�1/D < p < 1, then for any K � 2,

P
�
AN,p 2 EH(K )

 
.

H
exp

⇣
� c(H)K 1/|V |

N
2
p
D

⌘
.

(b) For any X ,Y 2 XN with X /2 EH(K ), for all F  H,

| hom(F ,X )� hom(F ,Y )| .
H
KN

|VF |p|EF | kX � Y kop
NpD

.
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Future directions

• Could possibly push down to p � N
�1/D with an improved counting

lemma (our regularity lemma is essentially optimal).

• To take p ⌧ N
�1/D would require better understanding of the

geometry of level sets for subgraph counting functionals

(recently accomplished for case of H non-bipartite and D-regular by

[Harel–Mousset–Samotij ’19]).

• Improved estimates for the partition function of sparse Exponential

Random Graphs of various types.

• More general classes of random graphs, e.g. Stochastic Block Model.

• Random geometric graphs? [Chatterjee–Harel ’14] got LDP for edge

counts.

⇤ Other applications of new regularity and counting lemmas in random

graph theory??

Thanks for your attention!
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