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Non-Hermitian random matrices

• Wigner 1950s: used random matrix to model spectrum of
Hamiltonian for large nucleus.

• Hamiltonians are Hermitian.

• Are non-Hermitian random matrices relevant to physics?

Yes:

• Open quantum systems
• Quantum chromodynamics
• Stability analysis for large dynamical systems (food networks, neural

networks)
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The Circular Law

• Fix a random variable ξ ∈ C with E ξ = 0, E |ξ|2 = 1. For each n let
Xn be n × n matrix of iid copies of ξ.

• Theorem (Tao–Vu ’08): Almost surely, the rescaled ESDs

µ 1√
n
Xn

=
1

n

n∑
j=1

δλj ( 1√
n
Xn)

converge weakly to 1
π1B(0,1)dxdy as n→∞.

• Builds on ideas of (Girko ’84) and (Bai ’97), and previous advances of
(Pan–Zhou ’07) and (Götze–Tikhomirov ’07). Complex Gaussian case
goes back to work of Ginibre from 1960s.
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The Circular Law

Figure: Circular law universality class: eigenvalue plots for randomly generated
5000× 5000 matrices using Bernoulli random variables (left) and Gaussian
random variables (right). Figure by P.M. Wood.
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Application: stability of dynamical systems

ẋi = −αxi + σ
∑
j 6=i

Sijxj , 1 ≤ i ≤ n.

• n is large. Synaptic matrix S encodes (asymetric) interaction strength
between nodes i and j .

• “Transition to chaos” when S has eigenvalues λi with <λi > α/σ.

• S is difficult to specify in practice.

• (May ’72) modeled S by a random matrix with iid entries. Used the
Circular Law to argue food networks become unstable when the
number of species is larger than the critical value α2/σ2.
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Circular Law: Extensions and Universality

For better models of the real world, need random matrices that are sparse
and inhomogeneous, with possibly dependent entries.

• Sparsity:

• Götze–Tikhomirov ’07, Tao–Vu ’07, Wood ’10, Basak–Rudelson ’17
• Also work of Bordenave–Caputo–Chafäı ’10 on matrices with heavy

tails

• Inhomogeneity:

• C.–Hachem–Najim–Renfrew ’16, Alt–Erdős–Krüger ’16

• Weakly-dependent entries:

• Elliptical law: Nguyen–O’Rourke ’12
• Stochastic matrices: Bordenave–Caputo–Chafäı ’08, Nguyen ’12
• Log-concave distribution: Adamczak ’12, Adamczak–Chafäı ’13
• Exchangeable entries: Adamczak–Chafäı–Wolff ’14
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Random regular graphs

• Consider an n × n random matrix A = (aij) with non-negative integer
entries constrained to have all row and column sums equal to d .

• Interpret A as the adjacency matrix for a d-regular directed multigraph.
• Entries in {0, 1}: simple graph (allowing loops).
• A symmetric: undirected graph.

• Random regular graphs have recently become a popular class of
models in universality theory. Dependency structure calls for
development of flexible arguments.

• Some recent advances:

• Local semicircle/Kesten–McKay law: Dumitriu–Pal ’09,
Tran–Vu–Wang ’10, Bauerschmidt–Knowles–Yau ’15,
Bauerschmidt–Huang–Yau ’16

• Sine kernel universality: Bauerschmidt–Huang–Knowles–Yau ’15
• Invertibility: C. ’14,

Litvak–Lytova–Tikhomirov–Tomczak-Jaegermann–Youssef ’15, ’17
• Circular law: C. ’17, Basak–C.–Zeitouni ’17
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The Kesten–McKay universality class

For d ≥ 2 define the oriented Kesten–McKay law as the measure on C
with density

fd(z) =
1

π

d2(d − 1)

(d2 − |z |2)2
1B(0,

√
d)(z).

This is the Brown measure of the free sum of d Haar unitary operators.

Conjecture (Bordenave–Chafäı / folklore)

Fix d ≥ 2 and let P1
n , . . . ,P

d
n be iid uniform random n × n permutation

matrices. As n→∞, the ESDs for 1√
d

(P1
n + · · ·+ Pd

n ) converge in

probability to to the oriented Kesten–McKay law.

The same should hold for the adjacency matrix of a uniform random
d-regular digraph by contiguity.
Note that after rescaling by

√
d , as d →∞ the density fd tends to the

circular law.
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Simulations

Figure: Empirical eigenvalue distributions for simulated 8000× 8000 rescaled
random regular digraph matrices 1√

d
A for d = 3 (left), 10 (middle), and 100

(right). Predictions from the oriented Kesten–McKay law are plotted in red.
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Results

Uniform model:

Theorem (C. ’17)

Let logC n ≤ d ≤ n/2 and let An be the adjacency matrix for a uniform
random d-regular digraph on n vertices. Then the ESDs for 1√

d
An

converge in probability to the circular law.

Permutation model:

Theorem (Basak–C.–Zeitouni ’17)

Let log16+ε n ≤ d . n, let P1
n , . . . ,P

d
n be iid uniform random n × n

permutation matrices, and put Sn = P1
n + · · ·+ Pd

n . Then the ESDs for
1√
d
Sn converge in probability to the circular law.
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Girko’s Hermitization

• Write Mn for 1√
d
An or 1√

d
Sn. For any nice test function f : C→ R,∫

C
f (z)dµMn(z) =

∫
C

∆f (z)(µMn ∗ log)(z)dm(z)

=

∫
C

∆f (z)

(
1

n
log | det(Mn − z)|

)
dm(z).

• Hermitize: Letting Mz
n =

 0 Mn − z

M∗n − z 0

, we have

1

n
log | det(Mn − z)| =

1

2n
log | det Mz

n | =

∫
R

log |x |dµMz
n
(x).

• Goal: show
∫
R log |x |dµMz

n
(x) converges in probability for a.e. z ∈ C.
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Bai’s approach

Goal: show
∫
R log |x |dµMz

n
(x) converges in probability for a.e. z ∈ C.

• Bai ’97: for a.e. z ∈ C, prove
1 measures µMz

n
converge in probability (to the right limit);

2 (weak Wegner-type estimate) w.h.p., µMz
n
(−t, t) = O(t) for all

t ≥ n−c ;
3 |λmin|(Mz

n ) = smin(Mn − z) ≥ n−O(1) w.h.p.

• Steps 1 and 2 both follow from quantitative convergence of Stieltjes
transforms:

g z
n (w) :=

1

2n
Tr(Mz

n − w)−1 =

∫
R

dµMz
n
(x)

x − w
.

Arguments for uniform and permutation models are completely
different!

• Step 3 builds on earlier work on the invertibility problem (C. ’14,
LLTTY ’15), using methods from Geometric Functional Analysis.
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Convergence of Stieltjes transforms: Uniform model

Comparison approach:

An −→ Bn −→ Gn

iid Bernoulli(d/n) iid Gaussian

• An → Bn: use an argument from Tran–Vu–Wang ’10. Let An,d

denote the set of d-regular digraph matrices. For a “bad” event En,

P(An ∈ En) = P(Bn ∈ En|Bn ∈ An,d) ≤ P(Bn ∈ En)

P(Bn ∈ An,d)
.

• Upper bound on P(Bn ∈ En): Use Talagrand’s concentration inequality
applied to linear statistics of Bernoulli random matrices (as in
Guionnet–Zeitouni ’01).

• Lower bound on P(Bn ∈ An,d) (i.e. lower bound on |An,d |), following
an argument of Shamir and Upfal.

• Bn → Gn Lindeberg replacement argument (following Chatterjee ’06).
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Convergence of Stieltjes transforms: Permutation model

• Idea: use the group structure.

• Let R = Rz,w = (Mz − w)−1. Let T be n × n matrix for

transposition of ` and m, and let M̃z , R̃ be obtained by replacing Pk

with PkT . Then M̃z = Mz + 1√
d

∆, where

∆ =

 0 Pk(T − I )

(T − I )T(Pk)T 0

 .

• From the resolvent identity,

R − R̃ =
1√
d
R∆R̃ =

1√
d
R∆R − 1

d
R∆R∆R̃ +

1

d3/2
R∆R∆R∆R̃.

• Taking expectations, the left hand side becomes zero. Then specialize
to the (`,m) entry, and average over k , `,m. Yields approximate
self-consistent relations between traces over the four n × n block
sub-matrices of R.
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