Circular laws for random regular digraphs

Nick Cook

UCLA

Based on joint work with Anirban Basak and Ofer Zeitouni (Weizmann Institute)

AMS Western Sectional Meeting, UC Riverside

2017/11/04

Non-Hermitian random matrices

- Wigner 1950s: used random matrix to model spectrum of Hamiltonian for large nucleus.
- Hamiltonians are Hermitian.
- Are non-Hermitian random matrices relevant to physics?

Non-Hermitian random matrices

- Wigner 1950s: used random matrix to model spectrum of Hamiltonian for large nucleus.
- Hamiltonians are Hermitian.
- Are non-Hermitian random matrices relevant to physics? Yes:
- Open quantum systems
- Quantum chromodynamics
- Stability analysis for large dynamical systems (food networks, neural networks)

The Circular Law

- Fix a random variable $\xi \in \mathbb{C}$ with $\mathbb{E} \xi=0, \mathbb{E}|\xi|^{2}=1$. For each n let X_{n} be $n \times n$ matrix of iid copies of ξ.
- Theorem (Tao-Vu '08): Almost surely, the rescaled ESDs

$$
\mu_{\frac{1}{\sqrt{n}}} x_{n}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}\left(\frac{1}{\sqrt{n}} x_{n}\right)}
$$

converge weakly to $\frac{1}{\pi} 1_{B(0,1)} d x d y$ as $n \rightarrow \infty$.

- Builds on ideas of (Girko '84) and (Bai '97), and previous advances of (Pan-Zhou '07) and (Götze-Tikhomirov '07). Complex Gaussian case goes back to work of Ginibre from 1960s.

Figure: Circular law universality class: eigenvalue plots for randomly generated 5000×5000 matrices using Bernoulli random variables (left) and Gaussian random variables (right). Figure by P.M. Wood.

Application: stability of dynamical systems

$$
\dot{x}_{i}=-\alpha x_{i}+\sigma \sum_{j \neq i} S_{i j} x_{j}, \quad 1 \leq i \leq n .
$$

- n is large. Synaptic matrix S encodes (asymetric) interaction strength between nodes i and j.
- "Transition to chaos" when S has eigenvalues λ_{i} with $\Re \lambda_{i}>\alpha / \sigma$.
- S is difficult to specify in practice.
- (May '72) modeled S by a random matrix with iid entries. Used the Circular Law to argue food networks become unstable when the number of species is larger than the critical value α^{2} / σ^{2}.

Circular Law: Extensions and Universality

For better models of the real world, need random matrices that are sparse and inhomogeneous, with possibly dependent entries.

- Sparsity:
- Götze-Tikhomirov '07, Tao-Vu '07, Wood '10, Basak-Rudelson '17
- Also work of Bordenave-Caputo-Chafaï '10 on matrices with heavy tails
- Inhomogeneity:
- C.-Hachem-Najim-Renfrew '16, Alt-Erdős-Krüger '16
- Weakly-dependent entries:
- Elliptical law: Nguyen-O'Rourke '12
- Stochastic matrices: Bordenave-Caputo-Chafaï '08, Nguyen '12
- Log-concave distribution: Adamczak '12, Adamczak-Chafaï '13
- Exchangeable entries: Adamczak-Chafaï-Wolff '14

Random regular graphs

- Consider an $n \times n$ random matrix $A=\left(a_{i j}\right)$ with non-negative integer entries constrained to have all row and column sums equal to d.
- Interpret A as the adjacency matrix for a d-regular directed multigraph.
- Entries in $\{0,1\}$: simple graph (allowing loops).
- A symmetric: undirected graph.
- Random regular graphs have recently become a popular class of models in universality theory. Dependency structure calls for development of flexible arguments.
- Some recent advances:
- Local semicircle/Kesten-McKay law: Dumitriu-Pal '09, Tran-Vu-Wang '10, Bauerschmidt-Knowles-Yau '15, Bauerschmidt-Huang-Yau '16
- Sine kernel universality: Bauerschmidt-Huang-Knowles-Yau '15
- Invertibility: C. '14, Litvak-Lytova-Tikhomirov-Tomczak-Jaegermann-Youssef '15, '17
- Circular law: C. '17, Basak-C.-Zeitouni '17

The Kesten-McKay universality class

For $d \geq 2$ define the oriented Kesten-McKay law as the measure on \mathbb{C} with density

$$
f_{d}(z)=\frac{1}{\pi} \frac{d^{2}(d-1)}{\left(d^{2}-|z|^{2}\right)^{2}} \mathbf{1}_{B(0, \sqrt{d})}(z)
$$

This is the Brown measure of the free sum of d Haar unitary operators.

Conjecture (Bordenave-Chafaï / folklore)

Fix $d \geq 2$ and let $P_{n}^{1}, \ldots, P_{n}^{d}$ be iid uniform random $n \times n$ permutation matrices. As $n \rightarrow \infty$, the ESDs for $\frac{1}{\sqrt{d}}\left(P_{n}^{1}+\cdots+P_{n}^{d}\right)$ converge in probability to to the oriented Kesten-McKay law.

The same should hold for the adjacency matrix of a uniform random d-regular digraph by contiguity.
Note that after rescaling by \sqrt{d}, as $d \rightarrow \infty$ the density f_{d} tends to the circular law.

Simulations

Figure: Empirical eigenvalue distributions for simulated 8000×8000 rescaled random regular digraph matrices $\frac{1}{\sqrt{d}} A$ for $d=3$ (left), 10 (middle), and 100 (right). Predictions from the oriented Kesten-McKay law are plotted in red.

Results

Uniform model:

Theorem (C. '17)

Let $\log ^{C} n \leq d \leq n / 2$ and let A_{n} be the adjacency matrix for a uniform random d-regular digraph on n vertices. Then the ESDs for $\frac{1}{\sqrt{d}} A_{n}$ converge in probability to the circular law.

Permutation model:

Theorem (Basak-C.-Zeitouni '17)

Let $\log ^{16+\varepsilon} n \leq d \lesssim n$, let $P_{n}^{1}, \ldots, P_{n}^{d}$ be iid uniform random $n \times n$ permutation matrices, and put $S_{n}=P_{n}^{1}+\cdots+P_{n}^{d}$. Then the ESDs for $\frac{1}{\sqrt{d}} S_{n}$ converge in probability to the circular law.

Girko's Hermitization

- Write M_{n} for $\frac{1}{\sqrt{d}} A_{n}$ or $\frac{1}{\sqrt{d}} S_{n}$. For any nice test function $f: \mathbb{C} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\int_{\mathbb{C}} f(z) d \mu_{M_{n}}(z) & =\int_{\mathbb{C}} \Delta f(z)\left(\mu_{M_{n}} * \log \right)(z) d m(z) \\
& =\int_{\mathbb{C}} \Delta f(z)\left(\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}-z\right)\right|\right) d m(z)
\end{aligned}
$$

- Hermitize: Letting $\boldsymbol{M}_{n}^{z}=\left(\begin{array}{cc}0 & M_{n}-z \\ M_{n}^{*}-\bar{z} & 0\end{array}\right)$, we have

$$
\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}-z\right)\right|=\frac{1}{2 n} \log \left|\operatorname{det} M_{n}^{z}\right|=\int_{\mathbb{R}} \log |x| d \mu_{M_{n}^{z}}(x)
$$

- Goal: show $\int_{\mathbb{R}} \log |x| d \mu_{M_{n}^{z}}(x)$ converges in probability for a.e. $z \in \mathbb{C}$.

Bai's approach

Goal: show $\int_{\mathbb{R}} \log |x| d \mu_{M_{n}^{z}}(x)$ converges in probability for a.e. $z \in \mathbb{C}$.

- Bai '97: for a.e. $z \in \mathbb{C}$, prove
(1) measures $\mu_{\boldsymbol{M}_{n}^{z}}$ converge in probability (to the right limit);
(2) (weak Wegner-type estimate) w.h.p., $\mu_{M_{n}^{z}}(-t, t)=O(t)$ for all $t \geq n^{-c}$;
(3) $\left|\lambda_{\text {min }}\right|\left(\boldsymbol{M}_{n}^{z}\right)=s_{\text {min }}\left(M_{n}-z\right) \geq n^{-O(1)}$ w.h.p.
- Steps 1 and 2 both follow from quantitative convergence of Stieltjes transforms:

$$
g_{n}^{z}(w):=\frac{1}{2 n} \operatorname{Tr}\left(\boldsymbol{M}_{n}^{z}-w\right)^{-1}=\int_{\mathbb{R}} \frac{d \mu_{\boldsymbol{M}_{n}^{z}}(x)}{x-w} .
$$

Arguments for uniform and permutation models are completely different!

- Step 3 builds on earlier work on the invertibility problem (C. '14, LLTTY '15), using methods from Geometric Functional Analysis.

Convergence of Stieltjes transforms: Uniform model

Comparison approach:
A_{n}

B_{n}
iid Bernoulli(d/n)
G_{n}
iid Gaussian

- $A_{n} \rightarrow B_{n}$: use an argument from Tran-Vu-Wang '10. Let $\mathcal{A}_{n, d}$ denote the set of d-regular digraph matrices. For a "bad" event \mathcal{E}_{n},

$$
\mathbb{P}\left(A_{n} \in \mathcal{E}_{n}\right)=\mathbb{P}\left(B_{n} \in \mathcal{E}_{n} \mid B_{n} \in \mathcal{A}_{n, d}\right) \leq \frac{\mathbb{P}\left(B_{n} \in \mathcal{E}_{n}\right)}{\mathbb{P}\left(B_{n} \in \mathcal{A}_{n, d}\right)}
$$

- Upper bound on $\mathbb{P}\left(B_{n} \in \mathcal{E}_{n}\right)$: Use Talagrand's concentration inequality applied to linear statistics of Bernoulli random matrices (as in Guionnet-Zeitouni '01).
- Lower bound on $\mathbb{P}\left(B_{n} \in \mathcal{A}_{n, d}\right)$ (i.e. lower bound on $\left.\left|\mathcal{A}_{n, d}\right|\right)$, following an argument of Shamir and Upfal.
- $B_{n} \rightarrow G_{n}$ Lindeberg replacement argument (following Chatterjee '06).

Convergence of Stieltjes transforms: Permutation model

- Idea: use the group structure.
- Let $\boldsymbol{R}=\boldsymbol{R}^{\boldsymbol{z}, w}=\left(\boldsymbol{M}^{\boldsymbol{z}}-w\right)^{-1}$. Let T be $n \times n$ matrix for transposition of ℓ and m, and let $\widetilde{\boldsymbol{M}}^{z}, \widetilde{\boldsymbol{R}}$ be obtained by replacing P^{k} with $P^{k} T$. Then $\widetilde{\boldsymbol{M}}^{\boldsymbol{z}}=\boldsymbol{M}^{\boldsymbol{z}}+\frac{1}{\sqrt{d}} \Delta$, where

$$
\Delta=\left(\begin{array}{cc}
0 & P^{k}(T-I) \\
(T-I)^{\top}\left(P^{k}\right)^{\top} & 0
\end{array}\right) .
$$

- From the resolvent identity,

$$
\boldsymbol{R}-\widetilde{\boldsymbol{R}}=\frac{1}{\sqrt{d}} \boldsymbol{R} \Delta \widetilde{\boldsymbol{R}}=\frac{1}{\sqrt{d}} \boldsymbol{R} \Delta \boldsymbol{R}-\frac{1}{d} R \Delta R \Delta \widetilde{R}+\frac{1}{d^{3 / 2}} R \Delta R \Delta R \Delta \widetilde{\boldsymbol{R}} .
$$

- Taking expectations, the left hand side becomes zero. Then specialize to the (ℓ, m) entry, and average over k, ℓ, m. Yields approximate self-consistent relations between traces over the four $n \times n$ block sub-matrices of \boldsymbol{R}.

