1. (a) Extend \(\delta \) to \(C^0(M) \) by \(\delta(f) = \delta(f-f(p)) \) where \(f, f(p) \in F_p \).
(Note if \(\delta \) is a derivation then this must hold since \(\delta(\epsilon) = 0 \) for \(\epsilon \) constant.)
This \(\delta \) is a derivation: if \(f, g \in C^0(M) \) then
\[
\delta(fg) = \delta((fg-f(p) g(p)) = \delta((f-f(p)) g(p) + f(p) (g-g(p)) + (f-f(p)) g(p)) \\
= \delta(f g(p)) + \delta(f) \delta(g) + 0.
\]

(b) Define \(\{ \text{derivations} \} \to (F_p/F_p^2)^* \) by sending \(\delta \) to \(\delta|_{F_p} : F_p \to \mathbb{R} \). This is well-defined since if \(f, g \in F_p \) then \(\delta(fg) = 0 \) by Leibniz, so \(\delta|_{F_p^2} = 0 \).
The map is surjective by (a) and injective by uniqueness in (a).

2. If we show that \(\delta \) is surjective, then it's an isomorphism by dimension counting.

Let \(v_m \in T_p M \) and \(v_n \in T_q N \), and let \(\gamma_m, \gamma_n \) be curves in \(M, N \) with \(\gamma_m(0) = p, \gamma_n(0) = q \) such that \(\gamma_m(0) = v_m, \gamma_n(0) = v_n \).
Then we can define a curve \(\gamma = (\gamma_m, \gamma_n) \) in \(M \times N \),
and \(\gamma_m = \pi_{M} \circ \gamma, \gamma_n = \pi_{N} \circ \gamma \). Then by definition if differential,
\[
(\text{d} \pi_M)|_{(0, 0)} \left[\gamma \right] = [\gamma_m] = v_m
\]
and \((\text{d} \pi_N)|_{(0, 0)} \left[\gamma \right] = [\gamma_n] = v_n \); so if we define \(v = \gamma'(0) \in \mathbb{R}^{\text{dim}(M \times N)} \) then \(\text{d} \pi_M(v) = v_m, \text{d} \pi_N(v) = v_n \). This proves surjectivity.

Another solution: let \(\bar{U}_1, \bar{F}_2 \circ \bar{U}_1, \bar{U}_2, \bar{F}_2 \circ \bar{U}_2 \) be charts for \(p \in M, q \in N \); then
\(\bar{U}_1 \times \bar{U}_2 = \bar{F}_2(\bar{U}_1 \times \bar{U}_2) \) is a chart for \((p, q) \in M \times N \). Then \(\bar{F}_2^{-1} \circ \pi_{M \times N} \circ F : \bar{U}_1 \times \bar{U}_2 \to \bar{U}_1 \)
is projection, so in coordinates, \(\text{d} \pi_M = \begin{bmatrix} I & 0 \end{bmatrix} \). Similarly \(\text{d} \pi_N = \begin{bmatrix} 0 & I \end{bmatrix} \)
and so \((\text{d} \pi_M, \text{d} \pi_N) \) is the identity matrix in coordinates.
3. Let \((F_x, U_x, V_x), (F_p, U_p, V_p)\) be overlapping charts on \(\mathbb{M}\),
giving rise to charts \((\tilde{F}_x, U_x \times \mathbb{R}^n, \tilde{V}_x), (\tilde{F}_p, U_p \times \mathbb{R}^n, \tilde{V}_p)\) on \(TM\).

If we have coordinates \((x_1, \ldots, x_n)\) on \(U_x\), \((y_1, \ldots, y_n)\) on \(U_p\)

\[
\begin{pmatrix}
(x_1, \ldots, x_n, v_1, \ldots, v_n) \text{ on } U_x \times \mathbb{R}^n,
(y_1, \ldots, y_n, w_1, \ldots, w_n) \text{ on } U_p \times \mathbb{R}^n
\end{pmatrix}
\]

then

\[
\begin{pmatrix}
y_1, \ldots, y_n, w_1, \ldots, w_n
\end{pmatrix} =
\begin{pmatrix}
(F_{x_1}^{y_1} F_{x_2}^{y_2} \cdots F_{x_n}^{y_n})(x_1, \ldots, x_n),
\frac{d}{d F_{x_1}^{y_1} F_{x_2}^{y_2} \cdots F_{x_n}^{y_n}}(v_1, \ldots, v_n)
\end{pmatrix}
\]

and the Jacobian for this map is of the form

\[
\begin{bmatrix}
d(F_{x_1}^{y_1} F_{x_2}^{y_2} \cdots F_{x_n}^{y_n}) & 0 \\
& d(F_{x_1}^{y_1} F_{x_2}^{y_2} \cdots F_{x_n}^{y_n})
\end{bmatrix}
\]

which has determinant \((\det d(F_{x_1}^{y_1} F_{x_2}^{y_2} \cdots F_{x_n}^{y_n}))^2 > 0\).

Thus \(\{(\tilde{F}_x, U_x \times \mathbb{R}^n, \tilde{V}_x)\}\) is an essential atlas for \(TM\).

4. First note that the functions \(r^\alpha x_1\) and \(r^\alpha x_2\) extend continuously
to \((x_1, x_2) = (0, 0)\) iff \(\alpha > -1\), and extend smoothly iff \(\alpha > 0\).

If \(-1 < \alpha < 0\) then \(\frac{3}{\alpha} \left| \frac{x_1}{x_2} \right|^{\frac{1}{\alpha}} \frac{x_1}{x_2} \to \infty\). Thus the vector field

\[
X := r^\alpha \left(x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} \right)
\]
on \(\mathbb{R}^2\) for \((x_1, x_2) \neq (0, 0)\) extends smoothly to \(\mathbb{R}^2\) iff \(\alpha > 0\).

On \(S^2\), this is the same as extending smoothly from \(S^2 - \{(0, 0)\}\) to the south pole.

To determine when \(X\) extends smoothly to the north pole, we need to

write \(X\) in the other coordinate chart \((y_1, y_2)\), \(y_1 = \frac{x_1}{x_2}, y_2 = \frac{x_2}{x_2}\):

\[
\frac{\partial}{\partial y_1} = \frac{\partial}{\partial x_1} \frac{x_2}{x_1} + \frac{\partial}{\partial x_2} \frac{x_1}{x_2} = \frac{1}{r^2} \left(\frac{x_2}{x_1} \frac{\partial}{\partial y_1} - 2x_1 x_2 \frac{\partial}{\partial y_2} \right)
\]

and similarly \(\frac{\partial}{\partial y_2} = \frac{1}{r^2} \left(-2x_1 x_2 \frac{\partial}{\partial y_1} + (x_2^2 - x_1^2) \frac{\partial}{\partial y_2} \right)\). Note \(r = \frac{1}{\sqrt{y_1^2 + y_2^2}}\).

\[
X := r^\alpha \left(x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} \right) = r^\alpha \left(-\frac{x_1^2 - x_2^2}{r^2} \frac{\partial}{\partial y_1} + \frac{x_2 x_2 - x_1^2}{r^2} \frac{\partial}{\partial y_2} \right) = - (y_1^2 + y_2^2) \left(\frac{2}{y_1^2 + y_2^2} \frac{\partial}{\partial y_1} + \frac{2}{y_1^2 + y_2^2} \frac{\partial}{\partial y_2} \right).
\]

This extends smoothly to \((y_1, y_2) = (0, 0)\) (which is the north pole) iff \(\alpha \leq 0\).

The result follows.