1. Let \mathbb{CP}^n denote the usual complex projective n-space, defined as the quotient of $\mathbb{C}^{n+1} \setminus \{0\}$ by the group $\mathbb{C} \setminus \{0\}$ acting by scalar multiplication. Show that \mathbb{CP}^n is a smooth manifold of dimension $2n$ by constructing an atlas $\{(f_i, U_i, V_i)\}$ and checking that the transition functions $f_j^{-1} \circ f_i$ (mapping what subset of \mathbb{R}^{2n} to what subset of \mathbb{R}^{2n}?) are smooth.

2. do Carmo chapter 0 exercise 5, p. 32.

3. do Carmo chapter 0 exercise 9, p. 33, but don’t do the Klein bottle case in (b).

4. (a) In #3, you showed that \mathbb{RP}^n is orientable if and only if n is odd. In this problem, prove directly that \mathbb{RP}^n is orientable if n is odd by explicitly giving an oriented atlas for \mathbb{RP}^n, along the lines of the atlas given in class and on pp. 4–5, and proving that your atlas is oriented.

(b) Use your answer to #1 to prove that \mathbb{CP}^n is orientable for all n.

For a full updated schedule of class changes, please see the course web site, https://services.math.duke.edu/~ng/math621/.