Math 612 HW 4 Solutions

1. \(M \text{ connected} \Rightarrow H_0^c(M) = \{0\}, \quad H_0^c(M) = \begin{cases} \mathbb{R}, & M \text{ compact} \\ \{0\}, & \text{otherwise} \end{cases} \)

\[H_1^{Dr}: \text{if } \omega = f \, dx + g \, dy \text{ is closed} \quad \Leftrightarrow \quad \frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}, \quad \text{then by} \]

Green's Thm., if \(\gamma, \delta \) are homotopic paths in \(\mathbb{R}^2 \) with fixed endpoints, then \(\int_\gamma \omega = \int_\delta \omega \). Then we can define \(h: \mathbb{R}^2 \to \mathbb{R} \) by \(h(x,y) = \int_\gamma \omega \) where \(\gamma \) is any path from \((0,0)\) to \((x,y)\).

By choosing \(\gamma \) of the form \((x,y) \) for all \((x,y)\), we see that \(\frac{\partial h}{\partial x} = f \),

by choosing \((x,y) \), we get \(\frac{\partial h}{\partial y} = g \). Thus \(\omega = dh \) and \(H_1^{Dr}(\mathbb{R}^2) = 0 \).

\[H_2^{Dr}: \text{if } \omega = k(x,y) \, dx \wedge dy \text{, then } \omega = d\eta \text{ where} \]

\[\eta(x,y) = \left(\int_0^x k(t,y) \, dt \right) \, dy. \quad \text{Thus } \quad H_2^{Dr}(\mathbb{R}^2) = 0. \]

\[H_1^c: \text{Proceed as for } H_1^{Dr}, \text{ but fix } (x_0,y_0) \text{ outside } B_2(0) \supset \text{ supp } \omega, \]

and define \(h(x,y) = \int_\gamma \omega \) where \(\gamma \) is any path from \((x_0,y_0)\) to \((x,y)\).

Then \(\omega = dh \) as before, and \(h = 0 \) outside \(B_2(0) \) since any \((x,y) \notin B_2(0) \) can be connected to \((x_0,y_0)\) by a path outside \(B_2(0) \).

\[H_2^c: \text{Define } f: \Omega^2_c(\mathbb{R}^2) \to \mathbb{R} \text{ by } f(\omega) = \int_{\mathbb{R}^2} \omega. \]

\[\begin{bmatrix} \Omega^1_c(\mathbb{R}^2) \xrightarrow{d} \Omega^2_c(\mathbb{R}^2) \xrightarrow{f} \mathbb{R} \to 0 \end{bmatrix} \]

is exact. Then \(H_2^c(\mathbb{R}^2) = \Omega^2_c(\mathbb{R}^2)/\text{im } d \cong \Omega^2_c(\mathbb{R}^2)/\ker f \cong \mathbb{R} \).

It’s clear that \(f \) is surjective. Also, if \(\omega = d\eta \) for \(\eta \in \Omega^1_c(\mathbb{R}^2) \), then \(\eta = 0 \) outside \(B_2(0) \), and write \(\gamma = \partial B_2(0) \) by Green’s Thm.,

\[\int_{\mathbb{R}^2} \omega = \int_{\partial B_2(0)} \gamma \eta = 0. \]
\textbf{Claim: } \ker f \leq \text{im}(d: \mathcal{D}_c^\infty \to \mathcal{D}_c^\infty).

\textbf{Proof:} Suppose \(w = k(x,y) \, dx \, dy \) is compactly supported with
\[\iint_{\mathbb{R}^2} k(x,y) \, dx \, dy = 0. \]
Define
\[g_0(x,y) = \int_{-\infty}^{\infty} k(t,y) \, dt \]
\[\eta(x,y) = g_0(x,y) \, dy. \]
Then \(w = dx \, \eta \). Now \(g_0 \) isn't necessarily compactly supported:
for fixed \(y \), if \(x \gg 0 \), then \(g_0(x,y) = h(y) \) where \(h(y) = \int_{-\infty}^{\infty} k(t,y) \, dt \).
Note \(\int_{-\infty}^{\infty} h(y) \, dy = \iint_{\mathbb{R}^2} k(x,y) \, dx \, dy = 0 \), and \(h \) is compactly supported.
Since \(k \) is. Also define \(\sigma : \mathbb{R} \to \mathbb{R} \) to be any smooth function such that
\[\sigma(x) = \begin{cases} 0 & \text{if } x \ll 0, \\ 1 & \text{if } x \gg 0. \end{cases} \]
Then
\[g(x,y) := g_0(x,y) - \sigma(x) \, h(y) \]
is compactly supported: if \(|y| \gg 0 \) then \(g_0(x,y) = \sigma(x) \, h(y) = 0 \),
and for fixed \(y \), if \(|x| \gg 0 \) then \(g_0(x,y) = \sigma(x) \, h(y) \).
Furthermore,
\[d(g(x,y) \, dy) = d\eta - d(\sigma(x) \, h(y)) \, dy = \omega - \sigma'(x) \, h(y) \, dx \, dy. \]
Now define \(f : \mathbb{R}^2 \to \mathbb{R} \) by
\[f(x,y) = \sigma'(x) \left(\int_{-\infty}^{\infty} h(t) \, dt \right). \]
Since \(\sigma(x) \) is constant for \(|x| \gg 0 \) and \(\int_{-\infty}^{\infty} h(t) \, dt = 0 \), \(f \) is compactly supported.
Finally,
\[d \left(f(x,y) \, dx \right) = \sigma'(x) \, h(y) \, dy \, dx \]
so
\[\omega = d \left(g(x,y) \, dy - f(x,y) \, dx \right) \]
and we im \(d \), as desired.
2. (a) $H^1_{de} (\mathbb{R}^2 - \{0\})$ is clear except $k=1,2$.

H^1_{de}: Define $Z, B \subseteq \Omega^1 (\mathbb{R}^2 - \{0\})$ by $Z = \{dw - \partial f\}$ and $B = \{df | f: \mathbb{R}^2 - \{0\} \rightarrow \mathbb{R}\}$.

Define $\Phi: Z \rightarrow B$ by $\Phi(w) = \int_{\gamma_0} w$ where $\gamma_0 = \text{unit circle in } \mathbb{R}^2$.

Then Φ is surjective: if $w = "d\theta" = \frac{x dy - y dx}{x^2 + y^2}$, then $\Phi(w) = 2\pi$ and $dw = 0$.

Claim: $B = \ker \Phi$; then $\mathbb{R}^2 \cong \mathbb{R}/\mathbb{Z}$ as desired.

Note $B \subseteq \ker \Phi$ since $\int_{\gamma_0} df = 0$ by the fundamental theorem of line integrals. So it remains to prove $\ker \Phi \subseteq B$.

Suppose $w = f dx + g dy$ is closed. As in #1, we want to define $h: \mathbb{R}^2 - \{0\} \rightarrow \mathbb{R}$ by $h(x,y) = \int_{\gamma} w$ where γ is any path in $\mathbb{R}^2 - \{0\}$ from $(1,0)$ to (x,y). If this is well-defined, then $w = dh$.

But if $\Phi(w) = 0$, then this is well-defined: if γ, γ' are two paths from $(1,0)$ to (x,y), then $\exists k \in \mathbb{Z}$ such that γ' is homotopic to $k \gamma_0 + \gamma$ (i.e. trace to k times, then follow with γ).

By Green's Theorem,

$$\int_{\gamma} w = \int_{\gamma_0} w = k \int_{\gamma_0} w + \int_{\gamma'} w = \int_{\gamma'} w,$$

and so h is well-defined.

Note: $[c_0]$ generates $H^1_{de} (\mathbb{R}^2 - \{0\})$.

H^2_{de}: Use polar coordinates (r, θ) with $x = r \cos \theta, y = r \sin \theta$. Then

$$dr = \cos \theta \, dx + \sin \theta \, dy = \frac{xdx + ydy}{\sqrt{x^2 + y^2}}$$

$$d\theta = -\sin \theta \, dx + \cos \theta \, dy = \frac{-ydx + xdy}{\sqrt{x^2 + y^2}}$$

$$r \, dr \wedge d\theta = dx \wedge dy.$$
2. \textit{(a)} \quad \text{If } \omega = k(x,y) \, dx \wedge dy \text{ on } \mathbb{R}^2 \setminus 0, \text{ define } l : \mathbb{R}^2 \setminus 0 \to \mathbb{R} \text{ by}
\begin{align*}
l(r \cos \theta, r \sin \theta) &= \int_{r}^{\infty} t k(t \cos \theta, t \sin \theta) \, dt \\
\Rightarrow \frac{\partial l}{\partial r} &= r k(r \cos \theta, r \sin \theta).
\end{align*}
Thus if we define \(\eta \in \Omega^1(\mathbb{R}^2 \setminus 0) \) by \(\eta = l \, d\theta \), then
\[d\eta = \frac{\partial l}{\partial r} \, dr \wedge d\theta = k \, dr \wedge d\theta = k \, dx \wedge dy = \omega. \]

\text{If you don’t like polar coords, this can be shown in Cartesian:}
\begin{align*}
l(x,y) &= \int_{0}^{\infty} \frac{t}{x^2 + y^2} \, dt \\
\eta &= l(x,y) \left(-\frac{x \, dx + y \, dy}{x^2 + y^2}\right)
\end{align*}
and it's an involved but straightforward computation that \(\omega = dy \).

\textbf{(b)} \quad \text{Let } k : \mathbb{R}^2 \setminus 0 \to \mathbb{R} \text{ be any function with compact support} \\
in \mathbb{R}^2 \setminus 0 \text{ and such that } \iiint_{\mathbb{R}^2 \setminus 0} k \, dx \, dy \, dz \neq 0.

\textbf{We claim}
\[k \, dx \wedge dy \wedge dz = \text{im}(d : \Omega^2(\mathbb{R}^2 \setminus 0) \to \Omega^3(\mathbb{R}^2 \setminus 0)). \]

\textbf{Indeed, if } \omega \in \Omega^1_c(\mathbb{R}^2 \setminus 0) \text{ is given by}
\[\omega = f_1 \, dy \wedge dx + f_2 \, dx \wedge dz + f_3 \, dz \wedge dy, \]
\text{then there are } r, R > 0 \text{ such that}
\[(\text{supp } f_1) \cup (\text{supp } f_2) \cup (\text{supp } f_3) \subset \left\{ r < \| (x,y,z) \| < R \right\} = K. \]

\textbf{Write } \vec{F} \text{ for the vector field on } \mathbb{R}^2 \setminus 0 \text{ given by } \vec{F} = (f_1, f_2, f_3).

\textbf{Then } \omega = \div \vec{F} \, dx \wedge dy \wedge dz, \text{ and by the Divergence Theorem,}
\begin{align*}
\iiint_{\mathbb{R}^2 \setminus 0} (\div \vec{F}) \, dx \, dy \, dz &= \iiint_{K} (\div \vec{F}) \, dx \, dy \, dz = \int_{S^2_2(0)} \vec{F} \cdot d\vec{n} - \int_{S^2_2(0)} \vec{F} \cdot d\vec{n} = 0.
\end{align*}

\textbf{Thus } \omega = k \, dx \wedge dy \wedge dz.