1. \(\pi_1(\mathbb{X}, x_0) \text{ abelian} \Rightarrow \forall \alpha, \beta, \bar{\alpha} = \bar{\beta} \):

Let \(\gamma \) be a loop at \(x_0 \): we want \(\bar{\alpha} \cdot \bar{\gamma} \cdot \alpha = \bar{\beta} \cdot \gamma \cdot \beta \).

Define \(\gamma' = \text{loop at } x_0 \text{ given by } \gamma' = \alpha \cdot \bar{\beta} \). Then \([\gamma], [\gamma'] \in \pi_1(\mathbb{X}, x_0) \)

\(\Rightarrow \gamma \cdot \gamma' = \gamma' \cdot \gamma \Rightarrow \gamma \cdot \bar{\beta} = \alpha \cdot \bar{\beta} \cdot \gamma \)

\(\Rightarrow \alpha \cdot \bar{\gamma} \cdot \alpha \cdot \bar{\beta} \cdot \beta = \bar{\alpha} \cdot \bar{\beta} \cdot \gamma \cdot \beta = \bar{\beta} \cdot \gamma \cdot \beta \)

\(\forall \alpha, \beta, \bar{\alpha} = \bar{\beta} \Rightarrow \pi_1(\mathbb{X}, x_0) \text{ abelian} \):

Let \(\gamma, \gamma' \) be loops at \(x_0 \). Let \(\alpha \) be any path from \(x_0 \) to \(x_1 \) and define \(\beta = \gamma' \cdot \alpha \).

Then \(\bar{\alpha} \cdot \bar{\gamma} \cdot \alpha = \bar{\beta} \cdot \gamma \cdot \beta \)

\(\Rightarrow \beta \cdot (\bar{\alpha} \cdot \bar{\gamma} \cdot \alpha) = \bar{\beta} \cdot (\gamma' \cdot \alpha) \cdot \bar{\alpha} = \gamma \cdot \beta \cdot \bar{\alpha} \)

\(\Rightarrow \gamma' \cdot \gamma = \gamma' \cdot \alpha \cdot \bar{\alpha} = \beta \cdot (\bar{\alpha} \cdot \bar{\gamma} \cdot \alpha) = \gamma \cdot \beta \cdot \bar{\alpha} = \gamma (\gamma', \alpha) \cdot \alpha' \)

\(\Rightarrow \gamma' \cdot \gamma' = \gamma' \cdot \alpha \cdot \bar{\alpha} \cdot \bar{\gamma} \cdot \alpha \Rightarrow \gamma' \cdot \gamma' \)

So \([\gamma], [\gamma'] = [\gamma'], [\gamma'] \in \pi_1(\mathbb{X}, x_0)\).

2. (a) Let \(i: A \to X \) be the inclusion map \(i(a) = a \forall a \in A \). Then \(r \circ i = \text{id}_A \)

So \(\text{id} \pi_1(A, a_0) = (i_*)^{-1} \circ i_* \) where

\(\pi_1(A, a_0) \xrightarrow{i_*} \pi_1(X, a_0) \xrightarrow{r_*} \pi_1(A, a_0) \).

This means in particular that \(r_* \) is surjective since if \([\gamma] \in \pi_1(A, a_0) \) then \(r_* (i_* [\gamma]) = [\gamma] \).

(b) Let \(X = \mathbb{D} \), the closed unit disk, and \(A = S^1 = \text{boundary of } X \).

Choose \(a_0 \in A \) and define \(r: X \to A \) by \(r(x) = a_0 \forall x \). Then \(r \) maps any loop in \(X \) to the constant loop at \(a_0 \), so \(r_*: \pi_1(X, a_0) \to \pi_1(A, a_0) \)

sends everything to the identity element. However, \(\pi_1(A, a_0) \cong \mathbb{Z} \), so \(r_* \) is not surjective.
3. Let \(h: \mathbb{R}^n \to Y \) be the inclusion map. If \(h \) is extendable to \(\tilde{h}: \mathbb{R}^n \to Y \), then \(h = \tilde{h} \circ i: A \to Y \), so \(h_* = (\tilde{h})_* \circ i_* \), where
\[
\pi_1(\mathbb{R}^n, a) \xrightarrow{i_*} \pi_1(\mathbb{R}^n, a) \xrightarrow{\tilde{h}_*} \pi_1(Y, y_a).
\]
Now \(\pi_1(\mathbb{R}^n, a) \) is the trivial group so for any \(\gamma \in \pi_1(\mathbb{R}^n, a) \),
\[
h_*([\gamma]) = (\tilde{h})_* (i_* [\gamma]) = (\tilde{h})_* (i_*) = e.
\]

Let \(n = 2 \), \(A = S^1 \) = unit circle \(\subset \mathbb{R}^2 \), \(Y = S^1 \), \(h = \) identity map \(S^1 \to S^1 \).

Then \(h_*: \pi_1(S^1, a) \to \pi_1(S^1, a) \) is the identity map \(\mathbb{Z} \to \mathbb{Z} \), not the trivial map, so \(h \) isn't extendable to \(\mathbb{R}^2 \).

Note: (9) can be solved without using \(\pi_1 \), though it's not what I had in mind. For example: \(A = \mathbb{R} \cup 0 \subset \mathbb{R} \), \(Y = \mathbb{R} \),
\[
h: \mathbb{R} \to \mathbb{R} \text{ defined by } h(x) = \frac{1}{x} \quad x \neq 0,
\]
is continuous, but there's no way to extend \(h \) to a continuous map \(\mathbb{R} \to \mathbb{R}^2 \); however one define \(h(0) \),
\(h: \mathbb{R} \to \mathbb{R} \) won't be continuous.

4. Follow the hint. If \(h \) were homotopic to \(i_A \), rel \(\partial A \),
there would be a homotopy \(F: A \times I \to A \)
with \(F(x, 0) = x \), \(F(x, 1) = h(x) \) \(\forall x \in A \)
and \(F(a, t) = a \) \(\forall a \in \partial A \).

Then the map \(G: I \times I \to A \) defined by \(G(s, t) = F(\alpha(s), t) \)
satisfies \(G(s, 0) = \alpha(s) \), \(G(s, 1) = h(\alpha(s)) = \beta(s) \),
\(G(0, t) = F(\alpha(0), t) = \alpha(0) \), \(G(1, t) = F(\alpha(1), t) = \alpha(1) \).

So \(G \) shows that \(\alpha \) is path homotopic to \(\beta \).

Thus the loops \(\beta \cdot \alpha \) and \(\alpha \cdot \alpha \) at \((s, 0) \) are path homotopic
\[
\Rightarrow [\beta \cdot \alpha] = [\alpha \cdot \alpha] = e \in \pi_1(A, a, 0).
\]
\[
\Rightarrow p_* [\beta \cdot \alpha] = e \in \pi_1(C, 1) \Rightarrow \text{in } \mathbb{Z} = \pi_1(C, 1), \ p_* [\beta \cdot \alpha] = 0.
\]
Now $p_*[p \cdot \alpha]$ is the homology class of $(p \circ \beta) \cdot (p \cdot \alpha)$, and $p \cdot \alpha$ is the counter-clockwise loop at 1, while $p \circ \beta$ wraps around C once:

$$(p \circ \beta)(s) = p\left(h(\alpha(s)) \right) = p\left(h(st^1, 0) \right) = p\left(s+1, 2\pi s \right) \overset{\text{in polar coord.}}{=} \exp(2\pi is).$$

So in $\pi_1(C, 1) \cong \mathbb{Z}$, $p_*[p \cdot \alpha] = [p \circ \beta] \cdot [p \cdot \alpha]$ is mapped to $1 + 0 = 1 \in \mathbb{Z}$, rather than 0, contradicting...