Please read this syllabus carefully! You are responsible for knowing this information.

Course web site: Assignments, announcements, grades, and other course material will be posted on Sakai, https://sakai.duke.edu/. There’s also a rudimentary public web site at http://www.math.duke.edu/~ng/math222/.

Textbook: Vector Calculus, 6th edition, by J. E. Marsden and A. J. Tromba. It is very important that you read the relevant sections of the book as we cover them in class, as there will be topics that I don’t have time to discuss in depth.

Office hours: Wednesdays 4:20–5:00 and Thursdays 1:30–3:30, and by appointment. Please take full advantage of office hours to resolve any questions you may have about course material or homework. To set up an appointment, e-mail me, but please keep in mind that I can’t usually answer e-mail immediately; on occasion it may take a day for me to respond.

Course information (from the synopsis): Mathematics 222 is a course in vector calculus that uses linear algebra. Topics to be covered include: iterated integrals and partial derivatives, optimization (constrained and unconstrained) in multiple dimensions, the Implicit Function Theorem, cylindrical and spherical coordinate systems, vector fields, divergence and curl, parameterized curves and surfaces, arc length and surface area, and Green’s, Stokes’s, and Gauss’s Theorems.

Mathematics 221 is a prerequisite for this course. Prospective mathematics majors are encouraged to take Mathematics 221 followed by Mathematics 222 instead of Mathematics 212 followed by Mathematics 221. The 221/222 sequence will be accepted in lieu of the 212/221 sequence for the mathematics major. See http://www.math.duke.edu/first_year/math105.html for more details.

Renumbering note: This is the same course as the old Math 105.

Grading: Your grade will consist of a weighted average of homework (15%), two midterms (25% each), and the final (35%).

- Homework: Problem sets, usually composed of exercises from the textbook, will be due in class on Fridays. I plan to announce a number of problems during each class, related to the topic from that class.
Always show work—this helps you find mistakes in your solutions, and it helps with the assignment of partial credit. You may not receive full credit if steps are missing in your solution. For the sake of the grader, please make sure your problem sets are legible, clearly marked with your name, and stapled together. Box the answer to any problem that asks for a numerical answer.

You are encouraged to work with other students in the class on the homework, but you must write up the homework by yourself (no copying!), and acknowledge any collaborators. You may use calculators or computing programs where necessary; give any numerical answers to four significant figures. No unexcused late homework will be accepted. Your lowest homework score will be dropped.

- **Midterms:** There will be two in-class midterm exams, currently scheduled for Friday February 15 and Friday March 22. For midterms and the final, no calculators, notes, or books are permitted. You will only be excused from a test if you have prior written authorization from your dean or you have a serious short-term illness; in the latter case, you need to fill out the Short-Term Illness Notification form (linked from the first-year information web page, see below).

- **Final examination:** Thursday May 2 from 7:00–10:00 pm.

Structure: The course will be divided into three sections. Here is an outline:

I. Multivariable differential calculus

Vectors, inner products 1.1, 1.2
Functions of several variables, limits, partial derivatives 2.1, 2.2, 2.3, 2.4
Acceleration, arc lengths 4.1, 4.2
Chain rule, directional derivatives, gradient 2.5, 2.6
Taylor’s Theorem, max/min problems, Lagrange multipliers 3.1, 3.2, 3.3, 3.4
Implicit Function Theorem 3.5

II. Multivariable integral calculus

Double and triple integrals 5.1, 5.2, 5.3, 5.4, 5.5
Cylindrical/spherical coordinates, change of variables, Jacobian 1.4, 6.1, 6.2, 6.3

III. Vector calculus

Vector fields, cross products, divergence/curl 1.3, 1.5, 4.3, 4.4
Path and line integrals on curves 7.1, 7.2
Scalar and vector integrals over surfaces 7.3, 7.4, 7.5, 7.6
Green’s, Stokes’, Gauss’s Theorems, conservative vector fields 8.1, 8.2, 8.3, 8.4
Differential forms 8.5

Other information: http://www.math.duke.edu/first_year/f_y_info.html is a useful web site with general information about first-year math courses, the Help Room, what to do in case of illness, etc.