1. (25 points) For (a) and (b): one of the vector fields \(\vec{F} \) is conservative, one is not. If \(\vec{F} \) is conservative, find a function \(f(x, y, z) \) satisfying \(\vec{F} = \nabla f \); if not, explain why not.

(a) (10 points) \(\vec{F}(x, y, z) = (z/x, z + z/y, \ln(xy)) \), with domain \(\{(x, y, z) | x > 0, y > 0\} \)

One calculates \(\nabla \times \vec{F} = (-1, 0, 0) \neq \vec{0} \), and hence \(\vec{F} \) is not conservative. (Note that the domain of \(\vec{F} \) is simply connected, but this isn’t relevant!)

(b) (10 points) \(\vec{F}(x, y, z) = (2xe^y \cos(z + x^2), ze^y \sin(z + x^2), z + ze^y \cos(z + x^2) + e^y \sin(z + x^2)) \)

One calculates \(\nabla \times \vec{F} = \vec{0} \); since the domain of \(\vec{F}, \mathbb{R}^3 \), is simply connected, \(\vec{F} \) is conservative.

We now solve \(\vec{F} = \nabla f \) for \(f \). Integrate the \(x \) component of \(\vec{F} \) with respect to \(x \) to obtain

\[
f(x, y, z) = ze^y \sin(z + x^2) + f_1(y, z);
\]

now differentiate \(f \) with respect to \(y \) to obtain \(\partial f_1 / \partial y = 0 \), and so \(f_1(y, z) \) is just a function of \(z \); finally, differentiate \(f \) with respect to \(z \) to obtain \(df_1 / dz = z \), so \(f_1 = z^2/2 \). The final answer is \(f(x, y, z) = ze^y \sin(z + x^2) + z^2/2 \) (of course, an arbitrary constant can be added to this).

(c) (5 points) For \(\vec{F} \) from (b), evaluate \(\int_C \vec{F} \cdot d\vec{s} \), where \(C \) is the helix \((\frac{\pi}{2} \sin t, t, \frac{\pi}{2} \cos t)\), \(0 \leq t \leq \pi/2 \).

Since \(\vec{F} = \nabla f \),

\[
\int_C \vec{F} \cdot d\vec{s} = f(C(\pi/2)) - f(C(0)) = f(\pi/2, \pi/2, 0) - f(0, 0, \pi/2) = \frac{\pi}{2} - \frac{\pi^2}{8}.
\]

2. (20 points) Let \(C \) be the piecewise smooth closed curve which traverses the boundary of the square \([0, 2] \times [-2, 0] \subset \mathbb{R}^2 \) clockwise. Let

\[
\vec{F}(x, y) = (5x - 3y, x + y).
\]

(a) (10 points) Evaluate \(\oint_C (\vec{F} \cdot \hat{n}) \, ds \).

Let \(C' \) be the same curve as \(C \) but oriented counterclockwise, and let \(D = [0, 2] \times [-2, 0] \). Then by the Divergence Theorem in the plane,

\[
\oint_{C'} (\vec{F} \cdot \hat{n}) \, ds = \iint_D (\nabla \cdot \vec{F}) \, dA = \iint_D 6 \, dA = 24.
\]
Since the unit normal vectors \(\hat{n} \) for \(C \) and \(C' \) differ by a sign, we conclude that
\[
\oint_C (\vec{F} \cdot \hat{n}) \, ds = -\oint_{C'} (\vec{F} \cdot \hat{n}) \, ds = -24.
\]

Note. For a scalar line integral like \(\oint_C (\vec{F} \cdot \hat{n}) \, ds \), the orientation of \(C \) doesn’t matter, so we don’t get an extra \(-\) sign from that. The \(-\) sign comes from the fact that \(\hat{n} \) switches sign when the orientation of \(C \) is reversed.

(b) (10 points) Evaluate \(\oint_C (\vec{F} \cdot \vec{T}) \, ds \).

Note that \(\oint_C (\vec{F} \cdot \vec{T}) \, ds = \oint_C \vec{F} \cdot d\vec{s} = -\oint_{C'} \vec{F} \cdot d\vec{s} \). By Green’s Theorem,
\[
\oint_{C'} \vec{F} \cdot d\vec{s} = \oint_{C'} (5x - 3y) \, dx + (x + y) \, dy = \iint_D 4 \, dA = 16.
\]

It follows that \(\oint_C (\vec{F} \cdot \vec{T}) \, ds = -16 \).

3. (10 points) The parametric equations
\[
x = \sin^2 t, \quad y = \sin t \cos t
\]
for \(0 \leq t \leq \pi \) determine a simple closed curve in \(\mathbb{R}^2 \). Find the area of the region bounded by this curve.

(Random fact that you doubtless already know: \(\int \sin^2 x \, dx = \frac{x}{2} - \frac{\sin(2x)}{4} + C. \))

Let \(C \) be the closed curve given by the parametric equations, and let \(D \) be the region that it bounds. (It turns out that \(C \) is oriented the wrong way to calculate area, but that won’t matter.) Then
\[
\oint_C (-y \, dx + x \, dy) = \int_0^\pi (-\sin^2 t \cos^2 t - \sin^4 t) \, dt = -\int_0^\pi \sin^2 t \, dt = -\frac{\pi}{2}.
\]

The area of \(D \) is \(\frac{1}{2} \oint_C (-y \, dx + x \, dy) = \frac{\pi}{4} \).

Remark: the curve is actually just the circle \((x - 1/2)^2 + y^2 = 1/4\), which has radius 1/2 and thus area \(\pi/4 \).

4. (30 points) Let \(S \) denote the surface (a frustum of a cone) given by the part of \(z^2 = x^2 + y^2 \) satisfying \(1 \leq z \leq 2 \). Orient \(S \) upwards (in the positive \(z \) direction).

(a) (10 points) Find the surface area of \(S \).

Parametrize \(S \) by \(x = s \cos t, y = s \sin t, z = s \), with \(1 \leq s \leq 2 \) and \(0 \leq t \leq 2\pi \).

The normal vector is \(\vec{N} = (-s \cos t, -s \sin t, s) \). Hence the surface area of \(S \) is
\[
\iint_S dS = \int_1^2 \int_0^{2\pi} \| \vec{N} \| \, dt \, ds = \int_1^2 \int_0^{2\pi} s \sqrt{2} \, dt \, ds = 3\pi \sqrt{2}.
\]
(b) (10 points) Find the average z-coordinate of points in S.

We calculate

\[
\int_S z \, dS = \int_1^2 \int_0^{2\pi} s |\vec{N}| \, dt \, ds = \int_1^2 \int_0^{2\pi} s^2 \sqrt{2} \, dt \, ds = \frac{14\pi \sqrt{2}}{3}.
\]

Thus $\bar{z} = \left(\frac{\int_S z \, dS}{\int_S dS} \right) = \frac{14}{19}$.

(c) (10 points) Let S' be the surface $z = 2$, $x^2 + y^2 \leq 4$; note that S' shares a circle boundary with S. Orient S' so as to be consistent with the orientation of S. Finally, let S'' be the union of S and S'. Find the flux through S'' of \[\vec{F} = x \hat{i} + y \hat{j} + \hat{k}. \]

Note that our parametrization of S has the correct orientation; hence

\[
\iint_S \vec{F} \cdot d\vec{S} = \int_1^2 \int_0^{2\pi} (s \cos t, s \sin t, 1) \cdot \vec{N} \, dt \, ds = \int_1^2 \int_0^{2\pi} (s - s^2) \, dt \, ds = -\frac{5\pi}{3}.
\]

Viewed from above, the orientation on S induces a counterclockwise orientation on the boundary circle $z = 2$, $x^2 + y^2 = 4$. The compatible orientation on S' must induce the opposite orientation on this circle; it follows that S' is oriented downwards.

A parametrization X for S' is given by $x = s, y = t, z = 2$ for (s, t) in the disk $s^2 + t^2 \leq 4$. The normal vector for this parametrization is \hat{k}, which points the wrong way. Nevertheless, for this parametrization, we get

\[
\iint_X \vec{F} \cdot d\vec{S} = \iint_X \vec{F} \cdot \hat{n} \, dS = \iint_X dS = \text{Area}(S') = 4\pi.
\]

With S' oriented downwards, we thus have $\iint_{S'} \vec{F} \cdot d\vec{S} = -4\pi$. Adding everything together gives

\[
\iint_{S''} \vec{F} \cdot d\vec{S} = \iint_S \vec{F} \cdot d\vec{S} + \iint_{S'} \vec{F} \cdot d\vec{S} = -\frac{17\pi}{3}.
\]

5. (15 points) Let C be the “castle-shaped” path in \mathbb{R}^2 consisting of straight line segments connecting the following points, in order: $(0, 0), (0, 2), (1, 2), (1, 1), (2, 1), (2, 2), (3, 2), (3, 0)$. (Thus C begins at $(0, 0)$ and ends at $(3, 0)$.) Compute

\[
\int_C y \sin(xy) \, dx + (x \sin(xy) + 5x) \, dy.
\]
(Hint: there’s an easier solution than computing seven line integrals.)

Let C' be the straight-line path from $(0, 0)$ to $(3, 0)$. The union of C and C' bounds a rectilinear region D with area 5, and the counterclockwise-oriented boundary of D consists of C' along with the orientation reverse of C.

Write $M = y \sin(xy)$ and $N = x \sin(xy) + 5x$. By Green’s Theorem,

$$\int_{C'} M \, dx + N \, dy - \int_C M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA = \iint_D 5 \, dA = 25.$$

Parametrize C' as $\vec{x}(t) = (t, 0)$, $0 \leq t \leq 3$; then

$$\int_{C'} M \, dx + N \, dy = \int_0^3 ((0)(1) + (5t)(0)) \, dt = 0.$$

It follows that $\int_C M \, dx + N \, dy = -25$.

\[\text{Page 4}\]