Math 103X.02, Test 1—Solutions

Professor: Lenny Ng Fall 2006

- 1. (20 points) Let P=(2,0,1), Q=(2,1,2), R=(1,-2,2), and S=(1,-1,0) be four points in \mathbb{R}^3 .
 - (a) (5 points) Find the coordinates of the point U such that PQRU is a parallelogram (with the vertices in that order!).

We need $\overrightarrow{QP} = \overrightarrow{RU}$ and so $\overrightarrow{U} = \overrightarrow{P} - \overrightarrow{Q} + \overrightarrow{R} = \boxed{(1, -3, 1)}$.

- (b) (5 points) Find the coordinates of the midpoint of the line segment \overline{PR} . The midpoint is $\frac{1}{2}(\vec{P} + \vec{R}) = \boxed{(3/2, -1, 3/2)}$.
- (c) (5 points) Find the angle $\angle QPR$, i.e., the angle (somewhere between 0 and π) between \overrightarrow{PQ} and \overrightarrow{PR} .

Since $\|\overrightarrow{PQ}\|\|\overrightarrow{PR}\|\cos(\angle QPR) = \overrightarrow{PQ}\cdot\overrightarrow{PR}$, it follows that $\angle QPR = \cos^{-1}\left(-\frac{1}{\sqrt{12}}\right)$.

(d) (5 points) Do P, Q, R, and S lie in a plane? If so, find an equation for the plane (in the form Ax + By + Cz = D). If not, find the volume of the parallelepiped generated by \overrightarrow{PQ} , \overrightarrow{PR} , and \overrightarrow{PS} .

 \overrightarrow{PR} , and S are coplanar precisely if the parallelepiped generated by \overrightarrow{PQ} , \overrightarrow{PR} , and \overrightarrow{PS} has volume 0. The volume of this parallelepiped is the absolute value of the triple product

$$(\overrightarrow{PQ} \times \overrightarrow{PR}) \cdot \overrightarrow{PS} = \begin{vmatrix} 0 & 1 & 1 \\ -1 & -2 & 1 \\ -1 & -1 & -1 \end{vmatrix} = -3.$$

It follows that P, Q, R, and S are not coplanar and the volume of the parallelepiped is 3.

2. (10 points) An object $\vec{x}(t)$ moves in \mathbb{R}^2 in such a way that its acceleration satisfies

$$\vec{a}(t) = (6,6).$$

At t = 0, the object is at $P_0 = (0, 0)$; at t = 1, the object is at $P_1 = (3, 1)$.

(a) (5 points) Find $\vec{x}(t)$ for all t.

The velocity of the object is $\vec{v}(t) = \int \vec{a}(t) \, dt = (6t, 6t) + \vec{v}_0$ for some \vec{v}_0 , and the position is $\vec{x}(t) = \int \vec{v}(t) \, dt = (3t^2, 3t^2) + t\vec{v}_0 + \vec{x}_0$ for some \vec{x}_0 . Since $\vec{x}(0) = (0, 0)$ and $\vec{x}(1) = (3, 1)$, it follows that $\vec{x}_0 = 0$ and $\vec{v}_0 = (0, -2)$; hence $\vec{x}(t) = (3t^2, 3t^2 - 2t)$.

- (b) (5 points) It is a consequence of the Mean Value Theorem that, somewhere along the path of the object between P_0 and P_1 , the velocity of the object is parallel to the vector $\overrightarrow{P_0P_1}$. Find this point. We want to find the point at which the velocity vector $\overrightarrow{v}(t) = (6t, 6t 2)$ is proportional to $\overrightarrow{P_0P_1} = (3,1)$, that is, (6t, 6t 2) = (3k, k) for some k. This happens when 6t = 3(6t 2), or t = 1/2. The point is $\overrightarrow{x}(1/2) = \boxed{(3/4, -1/4)}$.
- 3. (25 points) Consider the lines ℓ_1 given by $\vec{x}(t) = t(-2, 2, 1) + (2, 2, 2)$ and ℓ_2 given by $\vec{x}(t) = t(0, 1, 1) + (3, -1, 4)$.
 - (a) (5 points) Let Π_1 be the plane perpendicular to ℓ_1 and passing through (3, -1, 4). Find an equation of the form Ax + By + Cz = D for Π_1 . A normal vector to Π_1 is given by the direction vector of ℓ_1 , (-2, 2, 1). The equation is -2x + 2y + z = -4.
 - (b) (5 points) Let Π_2 be the plane parallel to ℓ_2 and passing through the points (1,1,1) and (3,0,6). Find a set of *parametric* equations for Π_2 . Π_2 passes through (1,1,1) and is parallel to the vectors (0,1,1) (since it is parallel to ℓ_2) and (3,0,6)-(1,1,1)=(2,-1,5). Points on the plane are of the form (x,y,z)=(1,1,1)+s(0,1,1)+t(2,-1,5), or x=1+2t, y=1+s-t, z=1+s+5t. (Other answers are possible.)
 - (c) (10 points) Calculate the distance between ℓ_1 and ℓ_2 . A normal vector to both ℓ_1 and ℓ_2 is $\vec{n}=(-2,2,1)\times(0,1,1)=(1,2,-2)$. Points $P_1=(2,2,2)$ and $P_2=(3,-1,4)$ lie on ℓ_1 and ℓ_2 , respectively, and the desired distance is $\|\operatorname{proj}_{\vec{n}} \overrightarrow{P_1P_2}\| = \frac{|(1,2,-2)\cdot(1,-3,2)|}{\|(1,2,-2)\|} = \boxed{3}$.
 - (d) (5 points) Are the lines ℓ_1 and ℓ_2 intersecting, parallel, or skew? Explain. The distance between the two lines is nonzero so they don't intersect; they point in different directions so they aren't parallel. Thus they are skew.
- 4. (30 points) Consider the path $\vec{x}(t) = (3\sin(t^2), -4t^2, 3\cos(t^2))$.
 - (a) (5 points) Calculate \vec{v} at time $t=\sqrt{\pi}$. $\vec{v}=(6t\cos t^2,-8t,-6t\sin t^2)$ so the answer is $(-6\sqrt{\pi},-8\sqrt{\pi},0)$.
 - (b) (5 points) Calculate the arclength of the path between times t=0 and $t=\sqrt{\pi}$. $\|\vec{v}\|=10t$ (for t>0). The arclength is $\int_0^{\sqrt{\pi}}10t\,dt=\boxed{5\pi}$.
 - (c) (5 points) Calculate \vec{T} and \vec{N} at time $t = \sqrt{\pi}$. $\vec{T} = \vec{v}/\|\vec{v}\| = (\frac{3}{5}\cos t^2, -\frac{4}{5}, -\frac{3}{5}\sin t^2); d\vec{T}/dt = (-\frac{6t}{5}\sin t^2, 0, -\frac{6t}{5}\cos t^2); \|d\vec{T}/dt\| = \frac{6t}{5}; \vec{N} = \frac{d\vec{T}/dt}{\|d\vec{T}/dt\|} = (-\sin t^2, 0, -\cos t^2). \text{ At } t = \sqrt{\pi}, \vec{T} = (-3/5, -4/5, 0) \text{ and } \vec{N} = (0, 0, 1).$

- (d) (5 points) Find the curvature κ at time $t=\sqrt{\pi}$. $\kappa=\frac{\|d\vec{T}/dt\|}{\|\vec{v}\|}=\boxed{3/25}.$
- (e) (5 points) Find the radius of the osculating circle at time $t = \sqrt{\pi}$. The radius is $1/\kappa = 25/3$.
- (f) (5 points) The **normal plane** to a path $\vec{x}(t)$ at time t_0 is the plane through the path at $\vec{x}(t_0)$ parallel to the vectors \vec{N} and \vec{B} . Find an equation of the form Ax + By + Cz = D for the normal plane to the given path $\vec{x}(t)$ at time $t = \sqrt{\pi}$. The normal plane passes through $(0, -4\pi, -3)$ and is normal to $\vec{T} = (-3/5, -4/5, 0)$ (since it is parallel to \vec{N} and \vec{B}). Its equation is $3x + 4y = -16\pi$.

5. (15 points)

(a) (10 points) Suppose that the vector $\vec{a} \in \mathbb{R}^3$ satisfies

$$\vec{a} \times (0, 0, -2) = (-4, 3, 0).$$

Find the minimum possible value for $\|\vec{a}\|$. Justify your answer. If θ is the angle between \vec{a} and (0,0,-2), then

$$5 = \|(-4, 3, 0)\| = \|\vec{a} \times (0, 0, -2)\| = 2\|\vec{a}\| \sin \theta \le 2\|\vec{a}\|$$

and hence $\|\vec{a}\| \ge 5/2$. Equality is attained when $\theta = \pi/2$, and so the minimum value is 5/2.

Note 1: The locus of possible vectors \vec{a} satisfying $\vec{a} \times (0,0,-2) = (-4,3,0)$ is a line perpendicular to (0,0,-2) in the plane through the origin perpendicular to (-4,3,0); more precisely, it is given by $\{(2,-3/2,0)+t(0,0,1)\,|\,t\in\mathbb{R}\}.$

Note 2: The problem as originally stated used (1,0,-2) instead of (0,0,-2). In this case, no such vector \vec{a} exists because (1,0,-2) is not orthogonal to (-4,3,0).

(b) (5 points) Suppose that \vec{a} and \vec{b} are vectors in \mathbb{R}^2 such that

$$\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$$

for all vectors $\vec{c} \in \mathbb{R}^2$. Prove that $\vec{a} = \vec{b}$.

Solution 1. Write $\vec{a}=(a_1,a_2,a_3)$ and $\vec{b}=(b_1,b_2,b_3)$. Successively substituting $\vec{c}=\vec{\imath},\,\vec{c}=\vec{\jmath}$, and $\vec{c}=\vec{k}$ into the given equation yields $a_1=b_1,\,a_2=b_2$, and $a_3=b_3$. The result follows.

Solution 2. Substituting $\vec{c} = \vec{a} - \vec{b}$ into the given equation, we find that $\|\vec{a} - \vec{b}\|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = 0$. It follows that $\vec{a} - \vec{b} = \vec{0}$, as desired.

Note: The same result, with a similar proof, applies if \mathbb{R}^2 is replaced by \mathbb{R}^n for any n.