§5.1: 3, 6, 9 (here $y^4 \sin \pi x$ means $y^4 \sin(\pi x)$), 13, 14

§5.2: 3, 7, 11, 13, 20, 21, 25

Extra problems:

1. Let r be a fixed positive number. The equation $x^2 + y^2 + z^2 = r^2$ determines a sphere of radius r in \mathbb{R}^3. It follows that a solid hemisphere of radius r is given by the solid region above the disk $D = \{(x, y)|x^2 + y^2 \leq r^2\}$ in the xy plane and below the graph of the function $z = \sqrt{r^2 - x^2 - y^2}$.

(a) Find the volume of this hemisphere. You may want to use the indefinite integral

$$\int \sqrt{c - u^2} \, du = \frac{u\sqrt{c - u^2}}{2} + \frac{c}{2} \sin^{-1}\left(\frac{u}{\sqrt{c}}\right)$$

where c is a constant.

(b) Double your answer from (a) to deduce the volume of a solid sphere of radius r in \mathbb{R}^3.

2. Here’s a slightly less computation-intensive way to find the volume of a sphere. Imagine slicing the solid region bounded by $x^2 + y^2 + z^2 = r^2$ by the plane $x = x_0$. The result is a disk (bounded by a circle).

(a) What are the radius and area of this disk, in terms of x_0 and r? (Hint: the disk is centered at $(x_0, 0, 0)$.)

(b) Use the slicing method to find (again) the volume of a solid sphere of radius r.