Math 103X.02 Homework 3 Answers & Solutions Instructor: Lenny Ng Fall 2006

§2.1: 14. Level curves are ellipses $4x^2 + 9y^2 = c$; the graph is an elliptic paraboloid (see Figure 2.22); 34. (a) $F(x, y, z) = x^2 + xy - xz - 2$ (other answers are possible), (b) $f(x, y) = \frac{x^2 + xy - 2}{x}$.

§2.2: 12. 6/5; 28. 0; for # 13 and 23, see below.

§2.2, 13. Since $x^2 + 2xy + y^2 = (x + y)^2$, one is tempted to cancel x + y from numerator and denominator to obtain $\lim_{(x,y)\to(0,0)} (x + y) = 0$, which agrees with the answer in the back of the book. This is, however, incorrect!

Recall the definition of limit: $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = L$ means that for all $\epsilon > 0$, there is a $\delta > 0$ such that $|f(\vec{x}) - L| < \epsilon$ for all \vec{x} satisfying the condition that $0 < ||\vec{x} - \vec{a}|| < \delta$. In particular, if the limit exists, then there must be some δ (corresponding to your favorite value of ϵ) such that $f(\vec{x})$ exists for all \vec{x} with $0 < ||\vec{x} - \vec{a}|| < \delta$. Now for $f(x, y) = \frac{x^2 + 2xy + y^2}{x + y}$, f(x, y) is undefined whenever y = -x. For any δ , the set of vectors (x, y) such that $0 < ||(x, y) - (0, 0)|| < \delta$ always contains a vector (x, y) with y = -x, for example $(\delta/2, -\delta/2)$; for such a vector, f(x, y) is undefined. This contradicts a necessary condition for the limit to exist. We conclude that the desired limit *does not exist*.

§2.2, 23. Suppose that (x, y) approaches (0, 0) along the straight line y = mx for some fixed slope m. Then $f(x, y) = m^4 x^8 / (x^2 + m^4 x^4)^3$ and

$$\lim_{x \to 0} \frac{m^4 x^8}{(x^2 + m^4 x^4)^3} = \lim_{x \to 0} \frac{m^4 x^2}{(1 + m^4 x^2)^3} = 0.$$

So it looks like the limit of f(x, y) should be 0. In addition, if (x, y) instead approaches (0, 0) along the *y*-axis (the line of slope ∞), then since f(0, y) = 0 whenever $y \neq 0$, f(x, y) approaches 0 as well. In conclusion, $f(x, y) \rightarrow 0$ as (x, y) approaches (0, 0) along *any* straight line.

On the other hand, $f(y^2, y) = 1/8$ for all $y \neq 0$; thus f(x, y) is the constant 1/8 as (x, y) approaches (0, 0) along the parabola $x = y^2$. Since f(x, y) approaches different values depending on which path to (0, 0) is chosen, $\lim_{(x,y)\to(0,0)} f(x, y)$ does not exist.

§2.3: 18. $(e^2 + 1, 2e^2 - 1)$; 24. $\begin{bmatrix} -4 & 4 \\ 1 & -2 \\ 0 & 0 \end{bmatrix}$; 32. There are two: 4x - 12y + z = -17 and 4x - 12y + z = 15.

§2.4, 12:

$$f_{xx} = \frac{y^2 \cos \sqrt{x^2 + y^2} - x^2 \sqrt{x^2 + y^2} \sin \sqrt{x^2 + y^2}}{(x^2 + y^2)^{3/2}},$$

$$f_{xy} = f_{yx} = \frac{-xy\sqrt{x^2 + y^2} \sin \sqrt{x^2 + y^2} - xy \cos \sqrt{x^2 + y^2}}{(x^2 + y^2)^{3/2}},$$

$$f_{yy} = \frac{x^2 \cos \sqrt{x^2 + y^2} - y^2 \sqrt{x^2 + y^2} \sin \sqrt{x^2 + y^2}}{(x^2 + y^2)^{3/2}}.$$

Extra problems:

- 1. We will show that f(x, y) = c is continuous at an arbitrary point (a, b), that is, that $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$. Let $\epsilon > 0$. We need to find $\delta > 0$ so that if (x,y) satisfies $0 < ||(x,y) - (a,b)|| < \delta$, then $|f(x,y) - f(a,b)| < \epsilon$. Since f(x,y) = f(a,b) = c, any δ will do. For instance, $\delta = 1$: if 0 < ||(x, y) - (a, b)|| < 1 then $|f(x, y) - f(a, b)| = 0 < \epsilon$. Since there is a δ (= 1) for any ϵ , the limit is f(a, b), as desired.
- 2. We will show that f(x, y) = x is continuous at an arbitrary point (a, b), that is, that $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$. Let $\epsilon > 0$. We need to find $\delta > 0$ so that if (x,y) satisfies $0 < ||(x,y) - (a,b)|| < \delta$, then $|f(x,y) - f(a,b)| < \epsilon$. Now |f(x,y) - f(a,b)| = |x-a| is the absolute value of the difference of the x coordinates of (x, y) and (a, b). Certainly if the distance between (x, y) and (a, b) is less than ϵ , then |x - a| is less than ϵ as well. Hence we can set $\delta = \epsilon$: if $0 < ||(x, y) - (a, b)|| < \epsilon$ then $|f(x, y) - f(a, b)| = |x - a| < \epsilon$.

(Why is this true? Note that

$$||(x,y) - (a,b)|| = \sqrt{(x-a)^2 + (y-b)^2} \ge \sqrt{(x-a)^2} = |x-a|.$$

Thus if $||(x, y) - (a, b)|| < \epsilon$, then $|x - a| \le ||(x, y) - (a, b)|| < \epsilon$.) Since there is a δ (= ϵ) for any ϵ , the limit is f(a, b), as desired.