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Motivation

One direction of motivation: W exact symplectic manifold with
convex contact boundary V .

Vague question: construct a Fukaya category from exact
Lagrangians L in W , cylindrical near boundary, in terms of just the
boundary data Λ ⊂ V .

Perhaps fix the boundary condition Λ ⊂ V .
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The setting

Let M be a smooth manifold of dimension n. We’ll work with the
contact manifold

(V , ξ) = (J1(M), kerα),

where J1(M) = T ∗M × R and α = dz − λ, with λ the canonical
Liouville 1-form on T ∗M.
For M = Rn,

V = J1(Rn) = R2n+1
x1,...,xn,y1,...,yn,z

α = dz −
n∑

i=1

yi dxi .

A submanifold Λ ⊂ V is Legendrian if α|Λ ≡ 0 and dim(Λ) = n.
Particular case of interest: n = 1, (V , α) = (R3, dz − y dx), and Λ
is a Legendrian knot or link.
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Legendrian contact homology

Legendrian contact homology (Eliashberg–Hofer, Chekanov, late
’90s): associated to Λ ⊂ V , part of the Symplectic Field Theory
package.
Denote by Rα the Reeb vector field on V , defined by

ιRαdα = 0, α(Rα) = 1 :

for (V , α) = (J1(M), dz − λ), this is Rα = ∂/∂z . Assume Λ has
finitely many Reeb chords (integral curves for Rα with endpoints
on Λ) and write

R = {Reeb chords of Λ} = {a1, . . . , ap}.
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The DGA for LCH

We associate to Λ the Chekanov–Eliashberg differential graded
algebra (A, ∂): here A is the tensor algebra over R = Z[H1(Λ)]
generated by R = {a1, . . . , ap},

A = R〈a1, . . . , ap〉,

with grading induced by the Conley–Zehnder indices of a1, . . . , ap.
The differential ∂ : A → A is defined by

∂(ai ) =
∑

j1,...,jk ; k≥0
dimM(ai ;aj1 ,...,ajk )=1

∑
u∈M/R

sgn(u)e [u] aj1 · · · ajk ;

extend to A by the Leibniz rule ∂(xy) = (∂x)y + (−1)|x |x(∂y).
Here M(ai ; aj1 , . . . , ajk ) (k ≥ 0) is a moduli space to be defined
next.
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The moduli space

Let (Rt × V , d(etα)) be the symplectization of (V , α), with a
compatible almost complex structure J.
M(ai ; aj1 , . . . , ajk ) is the space of all J-holomorphic maps

u : (∆− {p+, p−1 , . . . , p
−
k }, ∂∆)→ (R× V ,R× Λ)

sending a neighborhood of p+ to ai at t = +∞ and a
neighborhood of p−` to aj` at t = −∞:
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LCH invariance

Theorem (Ekholm–Etnyre–Sullivan 2005)

Let Λ be Legendrian in V = J1(M). Then for the DGA (A, ∂)
associated to Λ:

deg(∂) = −1;

∂2 = 0;

the homology H∗(A, ∂) is invariant under Legendrian isotopy
of Λ.

This homology is the Legendrian contact homology of Λ.
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Legendrian knots in R3

In (R3, ker(dz − y dx)), there are two useful projections: the front
projection R3

xyz → R2
xz and the Lagrangian projection R3

xyz → R2
xy .

The front projection completely determines a Legendrian
knot, via y = dz/dx .

In the Lagrangian projection, Reeb chords correspond to
crossings.

There is a procedure called “resolution” for passing from front
projection to Lagrangian projection.
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Holomorphic disks in Lagrangian projection

Chekanov: in the xy projection, the holomorphic disks are given by
immersed disks u with:

boundary of u on πxy (Λ)

convex corners at ai , aj1 , . . . , ajk , with “Reeb sign” + at ai
and − at the rest.

∂(ai ) = aj1 · · · ajk + · · ·
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Example: DGA for the Legendrian trefoil

A = (Z[t±1])〈a1, a2, a3, a4, a5〉
|a1| = |a2| = 1, |a3| = |a4| = |a5| = |t| = 0

∂(a1) = t + a3 + a5 + a5a4a3

∂(a2) = 1− a3 − a5 − a3a4a5

∂(a3) = ∂(a4) = ∂(a5) = 0.
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LCH invariance in R3

Theorem (Chekanov, late ’90s)

Let Λ be Legendrian in R3. Then for the DGA (A, ∂) associated to
Λ:

deg(∂) = −1;

∂2 = 0;

the homology H∗(A, ∂) is invariant under Legendrian isotopy
of Λ.

In fact, the DGA (A, ∂) is invariant under an equivalence relation
called stable tame isomorphism, and stable tame isomorphism
implies quasi-isomorphism.
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Augmentations

Let (A, ∂) be the DGA for a Legendrian Λ. Let k be a field
(actually also works for a unital commutative ring).

Definition

An augmentation of (A, ∂) is a (graded) DGA map

ε : (A, ∂)→ (k, 0);

that is, ε ◦ ∂ = 0, ε(1) = 1, and ε(a) = 0 if |a| 6= 0.

Theorem (Leverson 2014)

Let (A, ∂) be the DGA of a Legendrian knot in R3 over
R = Z[t±1]. Any (graded) augmentation ε of (A, ∂) must satisfy
ε(t) = −1.
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Linearized LCH

Let ε : A → k be an augmentation. We can use ε to linearize the
differential, as follows:

Write Ak = A⊗R k = k〈a1, . . . , ap〉. Define the k-algebra
automorphism φε : Ak → Ak by φε(ai ) = ai + ε(ai ). Then

∂ε := φε ◦ ∂ ◦ φ−1
ε : Ak → Ak

is a filtered differential w.r.t. the wordlength filtration on Ak:

Ak = F0Ak ⊃ F1Ak ⊃ F2Ak ⊃ · · · ,

where FmAk is generated by words of length ≥ m. So ∂ε descends
to a map on the k-vector space

F1Ak/F2Ak = k〈a1, . . . , ap〉.

The homology of this is linearized contact homology LCH∗(ε).
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Example: trefoil

A = (Z[t±])〈a1, a2, a3, a4, a5〉, |a1| = |a2| = 1, |a3| = |a4| = |a5| = 0

∂(a1) = t + a3 + a5 + a5a4a3

∂(a2) = 1− a3 − a5 − a3a4a5

Five augmentations ε : A → F2: ε(t) = 1, ε(a1) = ε(a2) = 0, and

(ε(a3), ε(a4), ε(a5)) = (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), or (1, 1, 1).
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Example: trefoil

A = (Z[t±])〈a1, a2, a3, a4, a5〉, |a1| = |a2| = 1, |a3| = |a4| = |a5| = 0

∂ε(a1) = 1 + a3 + (a5 + 1) + (a5 + 1)a4a3

∂ε(a2) = 1 + a3 + (a5 + 1) + a3a4(a5 + 1)

Five augmentations ε : A → F2: ε(t) = 1, ε(a1) = ε(a2) = 0, and

(ε(a3), ε(a4), ε(a5)) = (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), or (1, 1, 1).

=⇒ ∂ε = φε ◦ ∂ ◦ φ−1
ε where φε(a1, . . . , a4) = 0, φε(a5) = 1
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Example: trefoil

A = (Z[t±])〈a1, a2, a3, a4, a5〉, |a1| = |a2| = 1, |a3| = |a4| = |a5| = 0

∂ε(a1) = a3 + a5+a4a3 + a5a4a3

∂ε(a2) = a3 + a5+a3a4 + a3a4a5

Five augmentations ε : A → F2: ε(t) = 1, ε(a1) = ε(a2) = 0, and

(ε(a3), ε(a4), ε(a5)) = (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), or (1, 1, 1).

=⇒ ∂ε = φε ◦ ∂ ◦ φ−1
ε where φε(a1, . . . , a4) = 0, φε(a5) = 1

∂ε : F2〈a1, a2, a3, a4, a5〉 → F2〈a1, a2, a3, a4, a5〉
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Linearized contact cohomology

Write C∗ = k〈a1, . . . , ap〉. Dualize to C ∗ = k〈a∨1 , . . . , a∨p 〉 with
|a∨i | = |ai |+ 1. Then the adjoint of ∂ε : C∗ → C∗−1 is
∂∗ε : C ∗ → C ∗+1.

The linearized Legendrian contact cohomology is
LCH∗(ε) = H∗(C ∗, ∂∗ε ). This counts augmented holomorphic disks:

For the trefoil, LCH2(ε) = F2〈a∨1 〉, LCH1(ε) = F2〈a∨3 , a∨4 〉:

∂ε(a1) = a3 + a5

∂ε(a2) = a3 + a5

//∂
∗
ε (a∨3 ) = a∨1 + a∨2

∂∗ε (a∨5 ) = a∨1 + a∨2 .
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Geometric augmentations

Some (but not all) augmentations have a geometric interpretation.

Let (W , ω = dθ) be an exact symplectic filling of (V , α): near
∂W = V , W looks like the symplectization of V : θ = etα.
A Lagrangian L ⊂W is an exact Lagrangian filling of Λ ⊂ V if
∂L = Λ and θ|L is exact.
By “functoriality of LCH”, this produces an augmentation

εL : (A, ∂)→ (F2, 0).
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Geometric augmentations, continued

Theorem (Ekholm–Honda–Kálmán 2012)

An exact Lagrangian filling

L ⊂ R4
− = (−∞, 0]× R3

for a Legendrian Λ ⊂ R3 induces an augmentation

εL : (A, ∂)→ (F2, 0).

Ekholm–Honda–Kálmán: the Legendrian trefoil has 5 exact
Lagrangian fillings, inducing the 5 augmentations of the DGA
(A, ∂). Furthermore, these fillings are pairwise nonisotopic.

Fillings that are isotopic should induce augmentations that are
“equivalent” in some sense. In what sense?
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2-copy

Definition

Λ Legendrian. The 2-copy of Λ is Λ2 = Λ1 t Λ2, where Λ1,Λ2 are
copies of Λ pushed off in the Reeb (∂/∂z) direction, with Λ1 above
Λ2.
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Mishachev link grading

Let R = {Reeb chords of Λ2}. Then

R = R11 tR12 tR21 tR22

where Rij = {Reeb chords Λi ← Λj}: R11,R22 are Reeb chords of
Λ1,Λ2 (“pure chords”), while R12,R21 are “mixed chords”.

An augmentation ε of (AΛ2 , ∂) is pure if ε = 0 on mixed chords
R12,R21.

Pure augmentation ε of AΛ2 , the DGA of the 2-copy
OO

��
augmentations ε1, ε2 of AΛ1 ,AΛ2

∼= AΛ, the DGA of Λ.
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Link grading splits the differential

Given a pure augmentation (ε1, ε2) of the 2-copy DGA AΛ2 , the
linearized differential ∂(ε1,ε2) splits: if we write Cij = k〈Rij〉, then

∂(ε1,ε2) : Cij → Cij .

In particular, the differential ∂(ε1,ε2) : C12 → C12 can be pictured
as follows: if a ∈ R12, then

∂(ε1,ε2)(a) =
∑

dimM(a;b)=1

#(M(a; b)/R) b
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Example: 2-copy of the trefoil

For ε1(a5) = ε2(a5) = 1: differentials ∂(ε1,ε2) on C12 and C21:

∂(ε1,ε2)(a12
1 ) = 0 ∂(ε1,ε2)(a21

1 ) = a21
3 + a21

5

∂(ε1,ε2)(a12
2 ) = 0 ∂(ε1,ε2)(a21

2 ) = a21
3 + a21

5

∂(ε1,ε2)(a12
3 ) = 0 ∂(ε1,ε2)(a21

3 ) = 0

∂(ε1,ε2)(a12
4 ) = 0 ∂(ε1,ε2)(a21

4 ) = 0

∂(ε1,ε2)(a12
5 ) = a12

1 + a12
2 ∂(ε1,ε2)(a21

5 ) = 0.
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Augmentation category

Summary: augmentations ε1, ε2 of (AΛ, ∂) yield a map ∂(ε1,ε2) on
C12 = k〈Reeb chords Λ1 ← Λ2〉 with ∂2

(ε1,ε2) = 0. Dually, if

C 12 = (C12)∗:
∂∗(ε1,ε2) : C 12 → C 12.

Now construct an A∞ category out of augmentations of Λ, as
follows:

objects are augmentations of (AΛ, ∂);

morphisms are elements of the graded vector spaces

Hom(ε1, ε2) = C 12.

The morphism spaces come equipped with the differential

m1 = ∂∗(ε1,ε2) : Hom(ε1, ε2)→ Hom(ε1, ε2).
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A∞ operations

In fact, m1 : Hom(ε1, ε2)→ Hom(ε1, ε2) is the first in a sequence
of A∞ operations

mk : Hom(εk , εk+1)⊗ Hom(εk−1, εk)⊗ · · · ⊗ Hom(ε1, ε2)

→ Hom(ε1, εk+1)

satisfying the A∞ relations

m1(m1(a1)) = 0

m1(m2(a1, a2)) = m2(m1(a1), a2) ± m2(a1,m1(a2))

m2(a1,m2(a2, a3)) − m2(m1(a1, a2), a3) = m1(m3(a1, a2, a3)) + m3(m1(a1), a2, a3)

± m3(a1,m1(a2), a3) ± m3(a1, a2,m1(a3))

.

.

.

In particular, if we pass to cohomology with respect to m1, then
we get an honest category where composition is given by m2.
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Definition of m2

Let Λ3 = Λ1 t Λ2 t Λ3 be the 3-copy of Λ (Λ1 lies above Λ2, which
lies above Λ3, in the z direction).

Cij = k〈Reeb chords Λi ← Λj〉, C ij = C ∗ij .

Then
m2 : Hom(ε2, ε3)⊗ Hom(ε1, ε2)→ Hom(ε1, ε3)

counts holomorphic disks

à la multiplication in Lagrangian intersection Floer theory.
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The augmentation category

Theorem (NRSSZ 2015)

Let Λ ⊂ R3 be a Legendrian knot or link. The mk operations
satisfy the A∞ relations, and so we get an A∞ category, the
augmentation category Aug+(Λ,k). The corresponding
cohomology category H∗Aug+(Λ,k) is an ordinary category.

This follows (modulo some details) by dualizing the fact that the
DGA of the n-copy Λn satisfies ∂2 = 0.

Theorem (NRSSZ 2015)

Up to A∞ equivalence, the augmentation category Aug+(Λ,k) is
an invariant of Λ under Legendrian isotopy (and the choice of
perturbation needed to define the category).
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The Bourgeois–Chantraine augmentation category

We can construct another A∞ category, with the same objects as
Aug+(Λ,k), by ordering the components in the n-copies from
bottom to top instead of from top to bottom.

(Equivalently, use C21 instead of C12 as the hom spaces.)

This produces a category introduced by Bourgeois and Chantraine
in 2012: the original “augmentation category”. We call this
Aug−(Λ,k).

For clarity, write Hom+,Hom− for the hom spaces in Aug+,Aug−.
The cohomology of Hom− is linearized contact cohomology:

H∗Hom−(ε, ε) ∼= LCH∗(ε).
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Hom+ and Hom−

Theorem

Let Λ be a Legendrian link and ε1, ε2 two augmentations of
(AΛ, ∂Λ). There is a short exact sequence of chain complexes

0→ Hom−(ε1, ε2)→ Hom+(ε1, ε2)→ C ∗(Λ)→ 0

resulting in a long exact sequence

· · · → H i−1(Λ)→ H i Hom−(ε1, ε2)

→ H i Hom+(ε1, ε2)→ H i (Λ)→ · · · .
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Unitality

Theorem (NRSSZ)

Aug+(Λ,k) is unital: for ε ∈ ObAug+, there is eε ∈ Hom+(ε, ε)
that composes under m2 as the identity.

In the front projection, eε =
∑

c c∨ where the sum is over all the
Reeb chords c at left cusps of the 2-copy.

By contrast, Aug−(Λ,k) is not unital.
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Isomorphism of augmentations

In a unital (A∞) category, there is a natural notion of isomorphism
of objects.

Definition

Two augmentations ε1, ε2 of Λ are isomorphic if there exist
cocycles x ∈ Hom+(ε1, ε2), y ∈ Hom+(ε2, ε1) such that

[m2(y , x)] = [eε1 ] ∈ H∗Hom(ε1, ε1)

[m2(x , y)] = [eε2 ] ∈ H∗Hom(ε2, ε2).

ε1

x
  

eε1 77 ε2

y

cc
eε2gg

This notion turns out to coincide with the notion of “DGA
homotopy” of maps (AΛ, ∂)→ (k, 0).
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Isomorphism and isotopic fillings

In the setting of fillings, we can reinterpret several results from the
literature in terms of Aug+.

Result (Ekholm–Honda–Kálmán): isotopic fillings induce
augmentations that are DGA homotopic.

Reinterpretation:

Theorem

L1, L2 exact Lagrangian fillings of Λ with corresponding
augmentations εL1 , εL2 of (AΛ, ∂). If L1, L2 are isotopic, then

εL1
∼= εL2 .

Can use this (as in EHK) to show that the five fillings of the
Legendrian trefoil are non-isotopic.
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Sabloff duality

Result (“Sabloff duality”, Ekholm–Etnyre–Sabloff): given an
augmentation ε of Λ, there is a long exact sequence relating
linearized contact homology and cohomology:

· · · → H i−1(Λ)→ LCH i (ε)→ LCH1−i (ε)→ H i (Λ)→ · · · .

Compare to

→ H i−1(Λ)→ H i Hom−(ε1, ε2)→ H i Hom+(ε1, ε2)→ H i (Λ)→ .

Reinterpretation:

Theorem

Hom+(ε1, ε2) and Hom−(ε2, ε1) are dual complexes (up to
quasi-isomorphism).
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Topology of fillings

Let L be an exact Lagrangian filling of Λ, with augmentation εL.
Result (Seidel; see also Ekholm, Ekholm–Honda–Kálmán,
Dimitroglou Rizell, Bourgeois–Chantraine):

LCH∗(εL) ∼= H∗(L).

Reinterpretation:

Theorem

H i Hom+(εL, εL) ∼= H i (L)

H i Hom−(εL, εL) ∼= H i (L,Λ)

and the long exact sequence

→ H i−1(Λ)→ H i Hom−(εL, εL)→ H i Hom+(εL, εL)→ H i (Λ)→

is the standard long exact sequence in relative cohomology.
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Cohomology and compactly supported cohomology

H i Hom+(εL, εL) ∼= H i (L)

H i Hom−(εL, εL) ∼= H i (L,Λ)

The augmentation category Aug+ measures cohomology and
is unital;

the BC augmentation category Aug− measures compactly
supported cohomology and is non-unital.

In our trefoil example, we have

H0 Hom+(ε, ε) = F2 H1 Hom+(ε, ε) = F2
2

H1 Hom−(ε, ε) = F2
2 H2 Hom−(ε, ε) = F2.

in agreement with H∗, H∗c for the punctured torus.
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Augmentations are sheaves

Nadler–Zaslow correspondence (“microlocalization”)

Sh(M;k)
∼−→ Fukε(T ∗M;k) :

equivalence between a category of sheaves on a manifold M and
the infinitesimally wrapped Fukaya category of T ∗M.

The augmentation category is some flavor of the RHS.

The LHS in this setting is STZ (Λ,k), the
Shende–Treumann–Zaslow dg category of rank 1 constructible
sheaves (2014).

Theorem (NRSSZ)

Let Λ be a Legendrian knot or link in R3. Then we have an
equivalence of A∞ categories

STZ (Λ,k) ∼= Aug+(Λ,k).
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