The augmentation category of a Legendrian knot

Lenny Ng

Duke University

Session on contact geometry and low-dimensional topology
AMS Western Sectional Meeting
April 19, 2015

A report on part of arXiv:1502.04939, joint with: Dan Rutherford (Ball State), Vivek Shende (UC Berkeley), Steven Sivek (Princeton), and Eric Zaslow (Northwestern).

These slides available at http://www.math.duke.edu/~ng/unlv.pdf .

Motivation

One direction of motivation: W exact symplectic manifold with convex contact boundary V.

Vague question: construct a Fukaya category from exact Lagrangians L in W, cylindrical near boundary, in terms of just the boundary data $\Lambda \subset V$.

Perhaps fix the boundary condition $\Lambda \subset V$.

Fillings

The setting

Let M be a smooth manifold of dimension n. We'll work with the contact manifold

$$(V,\xi)=(J^1(M),\ker\alpha),$$

where $J^1(M) = T^*M \times \mathbb{R}$ and $\alpha = dz - \lambda$, with λ the canonical Liouville 1-form on T^*M .

For $M = \mathbb{R}^n$,

$$V = J^{1}(\mathbb{R}^{n}) = \mathbb{R}^{2n+1}_{x_{1},\dots,x_{n},y_{1},\dots,y_{n},z}$$
$$\alpha = dz - \sum_{i=1}^{n} y_{i} dx_{i}.$$

A submanifold $\Lambda \subset V$ is Legendrian if $\alpha|_{\Lambda} \equiv 0$ and $\dim(\Lambda) = n$. Particular case of interest: n = 1, $(V, \alpha) = (\mathbb{R}^3, dz - y dx)$, and Λ is a Legendrian knot or link.

Legendrian contact homology

Legendrian contact homology (Eliashberg–Hofer, Chekanov, late '90s): associated to $\Lambda \subset V$, part of the Symplectic Field Theory package.

Denote by R_{α} the Reeb vector field on V, defined by

$$\iota_{R_{\alpha}}d\alpha=0, \quad \alpha(R_{\alpha})=1:$$

for $(V,\alpha)=(J^1(M),dz-\lambda)$, this is $R_\alpha=\partial/\partial z$. Assume Λ has finitely many Reeb chords (integral curves for R_α with endpoints on Λ) and write

$$\mathcal{R} = \{ \text{Reeb chords of } \Lambda \} = \{ a_1, \dots, a_p \}.$$

The DGA for LCH

Setup

We associate to Λ the Chekanov–Eliashberg differential graded algebra (\mathcal{A}, ∂) : here \mathcal{A} is the tensor algebra over $R = \mathbb{Z}[H_1(\Lambda)]$ generated by $\mathcal{R} = \{a_1, \dots, a_p\}$,

$$\mathcal{A}=R\langle a_1,\ldots,a_p\rangle,$$

with grading induced by the Conley–Zehnder indices of a_1, \ldots, a_p . The differential $\partial: \mathcal{A} \to \mathcal{A}$ is defined by

$$\partial(a_i) = \sum_{\substack{j_1, \dots, j_k; \ k \geq 0 \\ \dim \mathcal{M}(a_i; a_{j_1}, \dots, a_{j_k}) = 1}} \sum_{u \in \mathcal{M}/\mathbb{R}} \operatorname{sgn}(u) e^{[u]} a_{j_1} \cdots a_{j_k};$$

extend to \mathcal{A} by the Leibniz rule $\partial(xy)=(\partial x)y+(-1)^{|x|}x(\partial y)$. Here $\mathcal{M}(a_i;a_{j_1},\ldots,a_{j_k})$ $(k\geq 0)$ is a moduli space to be defined next.

Let $(\mathbb{R}_t \times V, d(e^t \alpha))$ be the symplectization of (V, α) , with a compatible almost complex structure J.

 $\mathcal{M}(a_i; a_{i_1}, \dots, a_{i_k})$ is the space of all *J*-holomorphic maps

$$u: (\Delta - \{p^+, p_1^-, \dots, p_k^-\}, \partial \Delta) \to (\mathbb{R} \times V, \mathbb{R} \times \Lambda)$$

sending a neighborhood of p^+ to a_i at $t=+\infty$ and a neighborhood of p_{ℓ}^- to $a_{i\ell}$ at $t=-\infty$:

LCH invariance

Theorem (Ekholm-Etnyre-Sullivan 2005)

Let Λ be Legendrian in $V = J^1(M)$. Then for the DGA (A, ∂) associated to Λ :

- $deg(\partial) = -1$;
- $\partial^2 = 0$;
- the homology $H_*(A, \partial)$ is invariant under Legendrian isotopy of Λ .

This homology is the Legendrian contact homology of Λ .

Legendrian knots in \mathbb{R}^3

In $(\mathbb{R}^3, \ker(dz - y \, dx))$, there are two useful projections: the front projection $\mathbb{R}^3_{xyz} \to \mathbb{R}^2_{xz}$ and the Lagrangian projection $\mathbb{R}^3_{xyz} \to \mathbb{R}^2_{xy}$.

- The front projection completely determines a Legendrian knot, via y = dz/dx.
- In the Lagrangian projection, Reeb chords correspond to crossings.
- There is a procedure called "resolution" for passing from front projection to Lagrangian projection.

Holomorphic disks in Lagrangian projection

Chekanov: in the xy projection, the holomorphic disks are given by immersed disks u with:

- boundary of u on $\pi_{xy}(\Lambda)$
- convex corners at $a_i, a_{j_1}, \ldots, a_{j_k}$, with "Reeb sign" + at a_i and at the rest.

$$\partial(a_i)=a_{i_1}\cdots a_{i_k}+\cdots$$

$$\mathcal{A} = (\mathbb{Z}[t^{\pm 1}])\langle a_1, a_2, a_3, a_4, a_5 \rangle$$

 $|a_1| = |a_2| = 1, \ |a_3| = |a_4| = |a_5| = |t| = 0$

$$\partial(a_1) = t + a_3 + a_5 + a_5 a_4 a_3$$

 $\partial(a_2) = 1 - a_3 - a_5 - a_3 a_4 a_5$
 $\partial(a_3) = \partial(a_4) = \partial(a_5) = 0.$

Example: DGA for the Legendrian trefoil

$$\mathcal{A} = (\mathbb{Z}[t^{\pm 1}])\langle a_1, a_2, a_3, a_4, a_5 \rangle$$

 $|a_1| = |a_2| = 1, |a_3| = |a_4| = |a_5| = |t| = 0$

$$\partial(a_1) = t + a_3 + a_5 + a_5 a_4 a_3$$

 $\partial(a_2) = 1 - a_3 - a_5 - a_3 a_4 a_5$
 $\partial(a_3) = \partial(a_4) = \partial(a_5) = 0.$

$$\mathcal{A} = (\mathbb{Z}[t^{\pm 1}])\langle a_1, a_2, a_3, a_4, a_5
angle$$

 $|a_1| = |a_2| = 1, \ |a_3| = |a_4| = |a_5| = |t| = 0$

$$\partial(a_1) = t + a_3 + a_5 + a_5 a_4 a_3$$

 $\partial(a_2) = 1 - a_3 - a_5 - a_3 a_4 a_5$
 $\partial(a_3) = \partial(a_4) = \partial(a_5) = 0.$

$$\mathcal{A} = (\mathbb{Z}[t^{\pm 1}])\langle a_1, a_2, a_3, a_4, a_5 \rangle$$

 $|a_1| = |a_2| = 1, \ |a_3| = |a_4| = |a_5| = |t| = 0$

$$\partial(a_1) = t + a_3 + a_5 + a_5 a_4 a_3$$

 $\partial(a_2) = 1 - a_3 - a_5 - a_3 a_4 a_5$
 $\partial(a_3) = \partial(a_4) = \partial(a_5) = 0.$

Theorem (Chekanov, late '90s)

Let Λ be Legendrian in \mathbb{R}^3 . Then for the DGA (\mathcal{A}, ∂) associated to Λ :

- $\bullet \ \deg(\partial) = -1;$
- $\partial^2 = 0$;
- the homology $H_*(A, \partial)$ is invariant under Legendrian isotopy of Λ .

In fact, the DGA (\mathcal{A},∂) is invariant under an equivalence relation called stable tame isomorphism, and stable tame isomorphism implies quasi-isomorphism.

Let (A, ∂) be the DGA for a Legendrian Λ . Let \mathbb{R} be a field (actually also works for a unital commutative ring).

Definition

An augmentation of (A, ∂) is a (graded) DGA map

$$\epsilon: (\mathcal{A}, \partial) \to (\mathbb{k}, 0);$$

that is, $\epsilon \circ \partial = 0$, $\epsilon(1) = 1$, and $\epsilon(a) = 0$ if $|a| \neq 0$.

Theorem (Leverson 2014)

Let (A, ∂) be the DGA of a Legendrian knot in \mathbb{R}^3 over $R = \mathbb{Z}[t^{\pm 1}]$. Any (graded) augmentation ϵ of (A, ∂) must satisfy $\epsilon(t) = -1$.

Let $\epsilon: \mathcal{A} \to \mathbb{R}$ be an augmentation. We can use ϵ to linearize the differential, as follows:

Write $\mathcal{A}_{\mathbb{k}} = \mathcal{A} \otimes_{R} \mathbb{k} = \mathbb{k} \langle a_1, \dots, a_p \rangle$. Define the \mathbb{k} -algebra automorphism $\phi_{\epsilon}: \mathcal{A}_{\mathbb{R}} \to \mathcal{A}_{\mathbb{R}}$ by $\phi_{\epsilon}(a_i) = a_i + \epsilon(a_i)$. Then

$$\partial_{\epsilon} := \phi_{\epsilon} \circ \partial \circ \phi_{\epsilon}^{-1} : \mathcal{A}_{\mathbb{k}} \to \mathcal{A}_{\mathbb{k}}$$

is a *filtered* differential w.r.t. the wordlength filtration on $\mathcal{A}_{\mathbb{R}}$:

$$\mathcal{A}_{\mathbb{k}} = \mathcal{F}^0 \mathcal{A}_{\mathbb{k}} \supset \mathcal{F}^1 \mathcal{A}_{\mathbb{k}} \supset \mathcal{F}^2 \mathcal{A}_{\mathbb{k}} \supset \cdots,$$

where $\mathcal{F}^m \mathcal{A}_{\mathbb{R}}$ is generated by words of length $\geq m$. So ∂_{ϵ} descends to a map on the k-vector space

$$\mathcal{F}^1\mathcal{A}_{\mathbb{k}}/\mathcal{F}^2\mathcal{A}_{\mathbb{k}}=\mathbb{k}\langle a_1,\ldots,a_p\rangle.$$

The homology of this is linearized contact homology $LCH_*(\epsilon)$.

Example: trefoil

$$\mathcal{A} = (\mathbb{Z}[t^{\pm}])\langle a_1, a_2, a_3, a_4, a_5 \rangle, \ |a_1| = |a_2| = 1, \ |a_3| = |a_4| = |a_5| = 0$$

$$\partial(a_1) = t + a_3 + a_5 + a_5 a_4 a_3$$

$$\partial(a_2) = 1 - a_3 - a_5 - a_3 a_4 a_5$$

Five augmentations
$$\epsilon: \mathcal{A} \to \mathbb{F}_2$$
: $\epsilon(t) = 1$, $\epsilon(a_1) = \epsilon(a_2) = 0$, and
$$(\epsilon(a_3), \epsilon(a_4), \epsilon(a_5)) = (0, 0, 1), \ (0, 1, 1), \ (1, 0, 0), \ (1, 1, 0), \ \text{or} \ (1, 1, 1).$$

Example: trefoil

Setup

$$\begin{split} \mathcal{A} &= (\mathbb{Z}[t^{\pm}]) \langle a_1, a_2, a_3, a_4, a_5 \rangle, \ |a_1| = |a_2| = 1, \ |a_3| = |a_4| = |a_5| = 0 \\ \\ \partial_{\epsilon}(a_1) &= 1 + a_3 + (a_5 + 1) + (a_5 + 1)a_4a_3 \\ \\ \partial_{\epsilon}(a_2) &= 1 + a_3 + (a_5 + 1) + a_3a_4(a_5 + 1) \end{split}$$

Five augmentations $\epsilon: A \to \mathbb{F}_2$: $\epsilon(t) = 1$, $\epsilon(a_1) = \epsilon(a_2) = 0$, and

$$(\epsilon(a_3), \epsilon(a_4), \epsilon(a_5)) = (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), \text{ or } (1, 1, 1).$$

$$\Longrightarrow \partial_{\epsilon} = \phi_{\epsilon} \circ \partial \circ \phi_{\epsilon}^{-1}$$
 where $\phi_{\epsilon}(a_1, \ldots, a_4) = 0, \ \phi_{\epsilon}(a_5) = 1$

$$\mathcal{A} = (\mathbb{Z}[t^{\pm}])\langle a_1, a_2, a_3, a_4, a_5 \rangle, \ |a_1| = |a_2| = 1, \ |a_3| = |a_4| = |a_5| = 0$$

$$\partial_{\epsilon}(a_1) = a_3 + a_5 + a_4 a_3 + a_5 a_4 a_3$$

$$\partial_{\epsilon}(a_2) = a_3 + a_5 + a_3 a_4 + a_3 a_4 a_5$$

Five augmentations $\epsilon: A \to \mathbb{F}_2$: $\epsilon(t) = 1$, $\epsilon(a_1) = \epsilon(a_2) = 0$, and $(\epsilon(a_3), \epsilon(a_4), \epsilon(a_5)) = (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), \text{ or } (1, 1, 1).$

$$\Longrightarrow \partial_{\epsilon} = \phi_{\epsilon} \circ \partial \circ \phi_{\epsilon}^{-1}$$
 where $\phi_{\epsilon}(a_1, \ldots, a_4) = 0, \ \phi_{\epsilon}(a_5) = 1$

Example: trefoil

Setup

$$\mathcal{A} = (\mathbb{Z}[t^{\pm}])\langle a_1, a_2, a_3, a_4, a_5 \rangle, \ |a_1| = |a_2| = 1, \ |a_3| = |a_4| = |a_5| = 0$$

$$\partial_{\epsilon}(a_1) = a_3 + a_5 + a_4 a_3 + a_5 a_4 a_3$$

$$\partial_{\epsilon}(a_2) = a_3 + a_5 + a_3 a_4 + a_3 a_4 a_5$$

Five augmentations
$$\epsilon: \mathcal{A} \to \mathbb{F}_2$$
: $\epsilon(t) = 1$, $\epsilon(a_1) = \epsilon(a_2) = 0$, and
$$(\epsilon(a_3), \epsilon(a_4), \epsilon(a_5)) = (0, 0, 1), \ (0, 1, 1), \ (1, 0, 0), \ (1, 1, 0), \ \text{or} \ (1, 1, 1).$$

$$\Longrightarrow \partial_{\epsilon} = \phi_{\epsilon} \circ \partial \circ \phi_{\epsilon}^{-1} \text{ where } \phi_{\epsilon}(a_{1}, \ldots, a_{4}) = 0, \ \phi_{\epsilon}(a_{5}) = 1$$
$$\partial_{\epsilon} : \mathbb{F}_{2}\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\rangle \to \mathbb{F}_{2}\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\rangle$$

Linearized contact cohomology

Write $C_* = \mathbb{k}\langle a_1,\ldots,a_p\rangle$. Dualize to $C^* = \mathbb{k}\langle a_1^\vee,\ldots,a_p^\vee\rangle$ with $|a_i^\vee| = |a_i| + 1$. Then the adjoint of $\partial_\epsilon: C_* \to C_{*-1}$ is $\partial_\epsilon^*: C^* \to C^{*+1}$.

The linearized Legendrian contact cohomology is $LCH^*(\epsilon) = H^*(C^*, \partial_{\epsilon}^*)$. This counts augmented holomorphic disks:

For the trefoil, $LCH^2(\epsilon) = \mathbb{F}_2\langle a_1^{\vee} \rangle$, $LCH^1(\epsilon) = \mathbb{F}_2\langle a_3^{\vee}, a_4^{\vee} \rangle$:

$$\partial_{\epsilon}(a_1) = a_3 + a_5$$
 $\partial_{\epsilon}(a_2) = a_3 + a_5$
 $\partial_{\epsilon}(a_5) = a_1^{\vee} + a_2^{\vee}$
 $\partial_{\epsilon}(a_5) = a_1^{\vee} + a_2^{\vee}$

Geometric augmentations

Setup

Some (but not all) augmentations have a geometric interpretation.

Let $(W, \omega = d\theta)$ be an exact symplectic filling of (V, α) : near $\partial W = V$, W looks like the symplectization of V: $\theta = e^t \alpha$.

A Lagrangian $L \subset W$ is an exact Lagrangian filling of $\Lambda \subset V$ if $\partial L = \Lambda$ and $\theta|_L$ is exact.

By "functoriality of LCH", this produces an augmentation

$$\epsilon_L: (\mathcal{A}, \partial) \to (\mathbb{F}_2, 0).$$

Theorem (Ekholm-Honda-Kálmán 2012)

An exact Lagrangian filling

$$L \subset \mathbb{R}^4_- = (-\infty, 0] \times \mathbb{R}^3$$

for a Legendrian $\Lambda \subset \mathbb{R}^3$ induces an augmentation

$$\epsilon_L: (A, \partial) \to (\mathbb{F}_2, 0).$$

Ekholm–Honda–Kálmán: the Legendrian trefoil has 5 exact Lagrangian fillings, inducing the 5 augmentations of the DGA (\mathcal{A},∂) . Furthermore, these fillings are pairwise nonisotopic.

Fillings that are isotopic should induce augmentations that are "equivalent" in some sense. In what sense?

Definition

Λ Legendrian. The 2-copy of Λ is $Λ^2 = Λ_1 ⊔ Λ_2$, where $Λ_1, Λ_2$ are copies of Λ pushed off in the Reeb (∂/∂z) direction, with $Λ_1$ above $Λ_2$.

Mishachev link grading

Let $\mathcal{R} = \{ \text{Reeb chords of } \Lambda^2 \}$. Then

$$\mathcal{R} = \mathcal{R}_{11} \sqcup \mathcal{R}_{12} \sqcup \mathcal{R}_{21} \sqcup \mathcal{R}_{22}$$

where $\mathcal{R}_{ii} = \{ \text{Reeb chords } \Lambda_i \leftarrow \Lambda_i \}$: $\mathcal{R}_{11}, \mathcal{R}_{22}$ are Reeb chords of Λ_1, Λ_2 ("pure chords"), while $\mathcal{R}_{12}, \mathcal{R}_{21}$ are "mixed chords".

An augmentation ϵ of $(\mathcal{A}_{\Lambda^2}, \partial)$ is pure if $\epsilon = 0$ on mixed chords $\mathcal{R}_{12}, \mathcal{R}_{21}$.

Pure augmentation ϵ of \mathcal{A}_{Λ^2} , the DGA of the 2-copy augmentations ϵ_1, ϵ_2 of $\mathcal{A}_{\Lambda_1}, \mathcal{A}_{\Lambda_2} \cong \mathcal{A}_{\Lambda}$, the DGA of Λ .

Link grading splits the differential

Given a pure augmentation (ϵ_1, ϵ_2) of the 2-copy DGA \mathcal{A}_{Λ^2} , the linearized differential $\partial_{(\epsilon_1, \epsilon_2)}$ splits: if we write $C_{ij} = \mathbb{k}\langle \mathcal{R}_{ij} \rangle$, then

$$\partial_{(\epsilon_1,\epsilon_2)}: C_{ij} \to C_{ij}.$$

In particular, the differential $\partial_{(\epsilon_1,\epsilon_2)}: C_{12} \to C_{12}$ can be pictured as follows: if $a \in \mathcal{R}_{12}$, then

$$\partial_{(\epsilon_1,\epsilon_2)}({\mathsf a}) = \sum_{\mathsf{dim}\,\mathcal{M}({\mathsf a};{\mathsf b})=1} \#(\mathcal{M}({\mathsf a};{\mathsf b})/\mathbb{R})\,{\mathsf b}$$

$$\mathcal{M}(a; b) = \left\{ -\frac{1}{2} \right\}$$

Example: 2-copy of the trefoil

$$\begin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_5^{12}) &= a_1^{12} + a_2^{12} \end{aligned}$$

$$\begin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{21}) &= a_3^{21} + a_5^{21} \\ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{21}) &= a_3^{21} + a_5^{21} \\ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{21}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{21}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_5^{21}) &= 0. \end{aligned}$$

Example: 2-copy of the trefoil

$$\begin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_5^{12}) &= a_1^{12} + a_2^{12} \end{aligned}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{1}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{2}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{3}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{4}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{5}^{21}) = 0.$$

$$\begin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{12}) &= 0\\ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{12}) &= 0\\ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{12}) &= 0\\ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{12}) &= 0\\ \partial_{(\epsilon_1,\epsilon_2)}(a_5^{12}) &= a_1^{12} + a_2^{12} \end{aligned}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{1}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{2}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{3}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{4}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{5}^{21}) = 0.$$

$$egin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{12}) &= 0 \ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{12}) &= 0 \ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{12}) &= 0 \ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{12}) &= 0 \end{aligned}$$

$$\partial_{(\epsilon_1,\epsilon_2)}(a_4^{12}) = a_1^{12} + a_2^{12}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{1}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{2}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{3}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{4}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{5}^{21}) = 0.$$

Example: 2-copy of the trefoil

$$\begin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_5^{12}) &= a_1^{12} + a_2^{12} \end{aligned}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{1}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{2}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{3}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{4}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{5}^{21}) = 0.$$

$$egin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{12}) &= 0 \ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{12}) &= 0 \ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{12}) &= 0 \ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{12}) &= 0 \end{aligned}$$

$$\partial_{(\epsilon_1,\epsilon_2)}(a_5^{12}) = a_1^{12} + a_2^{12}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{1}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{2}^{21}) = a_{3}^{21} + a_{5}^{21}$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{3}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{4}^{21}) = 0$$

$$\partial_{(\epsilon_{1},\epsilon_{2})}(a_{5}^{21}) = 0.$$

$$\theta_{(\epsilon_1,\epsilon_2)}(a_1^{12})=0$$
 $\theta_{(\epsilon_1,\epsilon_2)}(a_1^{12})=a_1^{21}+a_5^{21}$

$$\partial_{(\epsilon_1,\epsilon_2)}(a_2^{12})=0$$

$$\partial_{(\epsilon_1,\epsilon_2)}(a_3^{12})=0$$

$$\partial_{(\epsilon_1,\epsilon_2)}(a_4^{12})=0$$

$$\partial_{(\epsilon_1,\epsilon_2)}(a_5^{12}) = a_1^{12} + a_2^{12}$$

$$\begin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{21}) &= a_3^{21} + a_5^{21} \\ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{21}) &= a_3^{21} + a_5^{21} \\ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{21}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{21}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_5^{21}) &= 0. \end{aligned}$$

Example: 2-copy of the trefoil

$$\begin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{12}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_5^{12}) &= a_1^{12} + a_2^{12} \end{aligned}$$

$$\begin{aligned} \partial_{(\epsilon_1,\epsilon_2)}(a_1^{21}) &= a_3^{21} + a_5^{21} \\ \partial_{(\epsilon_1,\epsilon_2)}(a_2^{21}) &= a_3^{21} + a_5^{21} \\ \partial_{(\epsilon_1,\epsilon_2)}(a_3^{21}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_4^{21}) &= 0 \\ \partial_{(\epsilon_1,\epsilon_2)}(a_5^{21}) &= 0. \end{aligned}$$

Augmentation category

Setup

Summary: augmentations ϵ_1, ϵ_2 of $(\mathcal{A}_{\Lambda}, \partial)$ yield a map $\partial_{(\epsilon_1, \epsilon_2)}$ on $C_{12} = \mathbb{k} \langle \text{Reeb chords } \Lambda_1 \leftarrow \Lambda_2 \rangle$ with $\partial^2_{(\epsilon_1, \epsilon_2)} = 0$. Dually, if $C^{12} = (C_{12})^*$:

$$\partial_{(\epsilon_1,\epsilon_2)}^*: C^{12} \to C^{12}.$$

Now construct an A_{∞} category out of augmentations of Λ , as follows:

- objects are augmentations of (A_{Λ}, ∂) ;
- morphisms are elements of the graded vector spaces

$$\operatorname{Hom}(\epsilon_1, \epsilon_2) = C^{12}$$
.

The morphism spaces come equipped with the differential

$$m_1 = \partial_{(\epsilon_1, \epsilon_2)}^* : \operatorname{\mathsf{Hom}}(\epsilon_1, \epsilon_2) o \operatorname{\mathsf{Hom}}(\epsilon_1, \epsilon_2).$$

A_{∞} operations

Setup

In fact, $m_1: \mathsf{Hom}(\epsilon_1, \epsilon_2) \to \mathsf{Hom}(\epsilon_1, \epsilon_2)$ is the first in a sequence of A_{∞} operations

$$m_k : \mathsf{Hom}(\epsilon_k, \epsilon_{k+1}) \otimes \mathsf{Hom}(\epsilon_{k-1}, \epsilon_k) \otimes \cdots \otimes \mathsf{Hom}(\epsilon_1, \epsilon_2)$$

 $\to \mathsf{Hom}(\epsilon_1, \epsilon_{k+1})$

satisfying the A_{∞} relations

$$m_1(m_1(a_1)) = 0$$

$$m_1(m_2(a_1, a_2)) = m_2(m_1(a_1), a_2) \pm m_2(a_1, m_1(a_2))$$

$$m_2(a_1, m_2(a_2, a_3)) - m_2(m_1(a_1, a_2), a_3) = m_1(m_3(a_1, a_2, a_3)) + m_3(m_1(a_1), a_2, a_3)$$

$$\pm m_3(a_1, m_1(a_2), a_3) \pm m_3(a_1, a_2, m_1(a_3))$$

$$\vdots$$

In particular, if we pass to cohomology with respect to m_1 , then we get an honest category where composition is given by m_2 .

Definition of m_2

Setup

Let $\Lambda^3 = \Lambda_1 \sqcup \Lambda_2 \sqcup \Lambda_3$ be the 3-copy of Λ (Λ_1 lies above Λ_2 , which lies above Λ_3 , in the z direction).

$$C_{ij} = \mathbb{k} \langle \text{Reeb chords } \Lambda_i \leftarrow \Lambda_j \rangle, \quad C^{ij} = C_{ii}^*.$$

Then

$$m_2: \mathsf{Hom}(\epsilon_2,\epsilon_3) \otimes \mathsf{Hom}(\epsilon_1,\epsilon_2) \to \mathsf{Hom}(\epsilon_1,\epsilon_3)$$

counts holomorphic disks

à la multiplication in Lagrangian intersection Floer theory.

The augmentation category

Theorem (NRSSZ 2015)

Let $\Lambda \subset \mathbb{R}^3$ be a Legendrian knot or link. The m_k operations satisfy the A_∞ relations, and so we get an A_∞ category, the augmentation category $\mathcal{A}ug_+(\Lambda, \mathbb{k})$. The corresponding cohomology category $H^*\mathcal{A}ug_+(\Lambda, \mathbb{k})$ is an ordinary category.

This follows (modulo some details) by dualizing the fact that the DGA of the *n*-copy Λ^n satisfies $\partial^2 = 0$.

Theorem (NRSSZ 2015)

Up to A_{∞} equivalence, the augmentation category $\mathcal{A}ug_{+}(\Lambda, \mathbb{k})$ is an invariant of Λ under Legendrian isotopy (and the choice of perturbation needed to define the category).

We can construct another A_{∞} category, with the same objects as $\mathcal{A}ug_{+}(\Lambda, \mathbb{k})$, by ordering the components in the *n*-copies *from bottom to top* instead of from top to bottom.

(Equivalently, use C_{21} instead of C_{12} as the hom spaces.)

This produces a category introduced by Bourgeois and Chantraine in 2012: the original "augmentation category". We call this $\mathcal{A}ug_{-}(\Lambda, \mathbb{k})$.

For clarity, write Hom_+ , Hom_- for the hom spaces in $\operatorname{\mathcal{A}\it{u}\it{g}}_+$, $\operatorname{\mathcal{A}\it{u}\it{g}}_-$. The cohomology of Hom_- is linearized contact cohomology:

$$H^* \operatorname{Hom}_{-}(\epsilon, \epsilon) \cong LCH^*(\epsilon).$$

Theorem

Let Λ be a Legendrian link and ϵ_1, ϵ_2 two augmentations of $(\mathcal{A}_{\Lambda}, \partial_{\Lambda})$. There is a short exact sequence of chain complexes

$$0 \to \mathsf{Hom}_{-}(\epsilon_1, \epsilon_2) \to \mathsf{Hom}_{+}(\epsilon_1, \epsilon_2) \to \mathit{C}^*(\Lambda) \to 0$$

resulting in a long exact sequence

$$\cdots \to H^{i-1}(\Lambda) \to H^i \operatorname{\mathsf{Hom}}_-(\epsilon_1, \epsilon_2)$$

$$\to H^i \operatorname{\mathsf{Hom}}_+(\epsilon_1, \epsilon_2) \to H^i(\Lambda) \to \cdots.$$

Theorem (NRSSZ)

 $\mathcal{A}ug_{+}(\Lambda, \mathbb{k})$ is unital: for $\epsilon \in \mathsf{Ob}\,\mathcal{A}ug_{+}$, there is $e_{\epsilon} \in \mathsf{Hom}_{+}(\epsilon, \epsilon)$ that composes under m_{2} as the identity.

In the front projection, $e_{\epsilon} = \sum_{c} c^{\vee}$ where the sum is over all the Reeb chords c at left cusps of the 2-copy.

$$m_2(a,c_i) = a$$

 $m_2(c_2,a) = a$

By contrast, $Aug_{-}(\Lambda, \mathbb{k})$ is *not* unital.

In a unital (A_{∞}) category, there is a natural notion of isomorphism of objects.

Definition

Setup

Two augmentations ϵ_1, ϵ_2 of Λ are isomorphic if there exist cocycles $x \in \operatorname{Hom}_+(\epsilon_1, \epsilon_2)$, $y \in \operatorname{Hom}_+(\epsilon_2, \epsilon_1)$ such that

$$[m_2(y,x)] = [e_{\epsilon_1}] \in H^* \operatorname{Hom}(\epsilon_1, \epsilon_1)$$
$$[m_2(x,y)] = [e_{\epsilon_2}] \in H^* \operatorname{Hom}(\epsilon_2, \epsilon_2).$$

$$e_{\epsilon_1}$$
 ϵ_1 ϵ_2 ϵ_2

This notion turns out to coincide with the notion of "DGA homotopy" of maps $(\mathcal{A}_{\Lambda}, \partial) \to (\mathbb{k}, 0)$.

Isomorphism and isotopic fillings

In the setting of fillings, we can reinterpret several results from the literature in terms of $\mathcal{A}ug_+$.

Result (Ekholm–Honda–Kálmán): isotopic fillings induce augmentations that are DGA homotopic.

Reinterpretation:

Theorem

 L_1, L_2 exact Lagrangian fillings of Λ with corresponding augmentations $\epsilon_{L_1}, \epsilon_{L_2}$ of $(\mathcal{A}_{\Lambda}, \partial)$. If L_1, L_2 are isotopic, then

$$\epsilon_{L_1} \cong \epsilon_{L_2}$$
.

Can use this (as in EHK) to show that the five fillings of the Legendrian trefoil are non-isotopic.

Sabloff duality

Result ("Sabloff duality", Ekholm–Etnyre–Sabloff): given an augmentation ϵ of Λ , there is a long exact sequence relating linearized contact homology and cohomology:

$$\cdots \rightarrow H^{i-1}(\Lambda) \rightarrow LCH^{i}(\epsilon) \rightarrow LCH_{1-i}(\epsilon) \rightarrow H^{i}(\Lambda) \rightarrow \cdots$$

Compare to

$$\to H^{i-1}(\Lambda) \to H^i\operatorname{\mathsf{Hom}}_-(\epsilon_1,\epsilon_2) \to H^i\operatorname{\mathsf{Hom}}_+(\epsilon_1,\epsilon_2) \to H^i(\Lambda) \to.$$

Reinterpretation:

Theorem

 $\mathsf{Hom}_+(\epsilon_1, \epsilon_2)$ and $\mathsf{Hom}_-(\epsilon_2, \epsilon_1)$ are dual complexes (up to quasi-isomorphism).

Topology of fillings

Setup

Let L be an exact Lagrangian filling of Λ , with augmentation ϵ_L . Result (Seidel; see also Ekholm, Ekholm–Honda–Kálmán, Dimitroglou Rizell, Bourgeois–Chantraine):

$$LCH_*(\epsilon_L) \cong H_*(L)$$
.

Reinterpretation:

Theorem

$$H^{i} \operatorname{Hom}_{+}(\epsilon_{L}, \epsilon_{L}) \cong H^{i}(L)$$

 $H^{i} \operatorname{Hom}_{-}(\epsilon_{L}, \epsilon_{L}) \cong H^{i}(L, \Lambda)$

and the long exact sequence

$$\rightarrow \textit{H}^{i-1}(\Lambda) \rightarrow \textit{H}^{i} \, \mathsf{Hom}_{-}(\epsilon_{\textit{L}}, \epsilon_{\textit{L}}) \rightarrow \textit{H}^{i} \, \mathsf{Hom}_{+}(\epsilon_{\textit{L}}, \epsilon_{\textit{L}}) \rightarrow \textit{H}^{i}(\Lambda) \rightarrow$$

is the standard long exact sequence in relative cohomology.

Cohomology and compactly supported cohomology

$$H^{i} \operatorname{Hom}_{+}(\epsilon_{L}, \epsilon_{L}) \cong H^{i}(L)$$

 $H^{i} \operatorname{Hom}_{-}(\epsilon_{L}, \epsilon_{L}) \cong H^{i}(L, \Lambda)$

- ullet The augmentation category $\mathcal{A}\mathit{ug}_+$ measures cohomology and is unital;
- the BC augmentation category Aug_ measures compactly supported cohomology and is non-unital.

In our trefoil example, we have

$$H^0 \operatorname{Hom}_+(\epsilon, \epsilon) = \mathbb{F}_2$$
 $H^1 \operatorname{Hom}_+(\epsilon, \epsilon) = \mathbb{F}_2^2$ $H^2 \operatorname{Hom}_-(\epsilon, \epsilon) = \mathbb{F}_2$.

in agreement with H^* , H_c^* for the punctured torus.

Nadler-Zaslow correspondence ("microlocalization")

$$Sh(M; \mathbb{k}) \stackrel{\sim}{\longrightarrow} Fuk_{\epsilon}(T^*M; \mathbb{k}):$$

equivalence between a category of sheaves on a manifold M and the infinitesimally wrapped Fukaya category of T^*M .

The augmentation category is some flavor of the RHS.

The LHS in this setting is $STZ(\Lambda, \mathbb{k})$, the Shende–Treumann–Zaslow dg category of rank 1 constructible sheaves (2014).

Theorem (NRSSZ)

Let Λ be a Legendrian knot or link in \mathbb{R}^3 . Then we have an equivalence of A_{∞} categories

$$STZ(\Lambda, \mathbb{k}) \cong Aug_{+}(\Lambda, \mathbb{k}).$$