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Does a given manifold carry a Riemannian metric with strictly positive scalar curvature?

We will survey results addressing this question. Notation: a manifold is psc if it carries a
metric with positive scalar curvature. Large portions of this survey were shamelessly stolen
from Lawson and Michelsohn [5].

1 Who cares?

Asking that a manifold be psc is, in some sense, the weakest of all possible curvature con-
straints. Incidentally, note that any compact manifold in dimension at least 3 carries a
metric with strictly negative scalar curvature [1].

Psc manifolds arise in general relativity. Schoen and Yau use them in their proof of
the positive mass/energy conjecture/theorem, a famous ex-conjecture in general relativity
which states that the total energy (including contributions from both matter and gravity)
of a nontrivial isolated system is always positive, given certain “nice” conditions (spacetime
is asymptotically flat, matter with positive mass density is the only source of gravitational
fields).

2 General topological obstructions

In a celebrated paper from 1963, Lichnerowicz [7] gave the first known topological obstruction
to a manifold being psc, using the Lichnerowicz-Weitzenböck formula for the Dirac Laplacian

/D2 = ∇∗∇ + S/4,

where S is the scalar curvature. On an even-dimensional manifold X, the complex spinor
bundle /SC splits into a direct sum of two subbundles /S+ and /S−, and the Dirac operator
sends sections of one into sections of the other: /D : Γ(/S+) −→ Γ(/S−). More generally, there
is a Dirac operator /D : Γ(/SC) −→ Γ(/SC).

Proposition 1 (Lichnerowicz) If X is a spin psc manifold, then X has no harmonic
spinors, i.e., ker /D = 0. In fact, the same holds if X has nonnegative scalar curvature which
is not identically zero.
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Proof. Suppose σ ∈ Γ(/S+) satisfies /Dσ = 0. Then the Lichnerowicz-Weitzenböck formula
yields ∫

X

S‖σ‖2 = −(∇∗∇σ, σ) = −‖∇σ‖2,

whence the proposition. 2

Now the Atiyah-Singer index theorem applied to /D shows in this case that ind /D = Â(X);
Â(X) is the Â-genus, a topological invariant which for four-manifolds is equal to−σ(X)/8 =
−p1(X)/24.

Corollary 2 (Lichnerowicz) A compact spin psc manifold X of dimension 4m satisfies
Â(X) = 0.

Note that, for instance, the K3 surface V (x4 + y4 + z4 + w4) ⊂ CP 3 is not psc.
In 1974, Hitchin [4] generalized the Lichnerowicz result by applying the Atiyah-Singer

index theorem to a family of operators, and using the Weitzenböck formula again. The
Â-genus is a special case of the Atiyah-Milnor-Singer invariant

Â : ΩSpin
∗

−→ KO−∗(pt);

in fact, Â = Â in dimensions 4m.

Proposition 3 (Hitchin) A compact spin manifold X which is psc must satisfy Â(X) = 0.

By Bott periodicity, the ring KO−∗(pt) is Z in dimensions 0 and 4 (mod 8), Z/2 in dimensions
1 and 2 (mod 8), and 0 otherwise. Dimensions 0 and 4 (mod 8) are covered by the Â-genus;
the others give rise to the following result.

Corollary 4 (Hitchin) Every compact spin manifold in dimension 1 or 2 (mod 8) is home-
omorphic to a manifold which is not psc.

Proof. Half of the exotic spheres Σ in dimensions 1 or 2 (mod 8) (namely, those which do
not bound spin manifolds) satisfy Â(Σ) 6= 0. If X is a compact spin manifold in dimension
1 or 2 (mod 8), then one of Â(X) and Â(X#Σ) = Â(X) + Â(Σ) is not psc. 2

3 Compact simply connected manifolds

In [3], Gromov and Lawson essentially classified all compact simply connected psc mani-
folds. To construct large families of manifolds which were psc, they used the result below
(Proposition 5) concerning surgeries of manifolds. Recall that on a manifold of dimension n,
a surgery in dimension i is the following construction. Suppose we are given an embedded
sphere Si with trivial normal bundle, so that there is a neighborhood of Si diffeomorphic to
Si ×Dn−i, with boundary Si ×Sn−i−1; then replace Si ×Dn−i by Di+1×Sn−i−1, glued along
their (identical) boundary.

Proposition 5 was also proved by Schoen and Yau [10] using minimal submanifolds and
solutions to partial differential equations.
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Proposition 5 (Gromov–Lawson, Schoen–Yau) Any manifold obtained from a com-
pact psc manifold by surgeries in codimension at least 3 is also psc. In particular, the
connected sum of two compact psc manifolds is psc.

Outline of Proof. We will only treat the case of connected sums. The idea is as follows:
given a compact psc manifold M , change the metric in a small ball B around a point p so
that it agrees with the original metric of M near the boundary of B, while looking like the
metric of Sn−1(ε)×R near p, where Sn−1(ε) is the standard Euclidean sphere with radius ε.

Give the cartesian product D × R the induced product metric. Consider the hyper-
surface H = {(x, t) : (‖x‖, t) ∈ γ} ⊂ D × R, where γ is some curve in R

2 = {(r, t)} which
begins by coming down along the positive r axis, and ends by going out along the line r = ε.
Now give H the metric induced from D. Then H begins with the metric induced from
M , and ends with the metric induced from S̃n−1(ε) × R, where S̃n−1(ε) is the sphere in M
of points distance ε from p. By choosing this curve carefully, we can ensure that positive
scalar curvature is preserved. If ε is small enough, then along the straight line r = ε, we
can gradually change the metric from the one induced from S̃n−1(ε)×R to the one induced
from Sn−1(ε) × R; the verification of this involves computing principal curvatures of, and
the metric on, S̃n−1(ε), to order ε. 2

Using this result and facts from h-cobordism theory, Gromov and Lawson were then able to
give very general conditions on when a simply connected manifold is psc.

Proposition 6 (Gromov–Lawson) Let X be a compact simply connected spin n-manifold
with n ≥ 5. If X is spin cobordant to a psc manifold, then X is psc.

Lemma 7 ([5]) A simply connected manifold X of dimension at least 5 is spin if and only
if every 2-sphere embedded in X has trivial normal bundle.

Proof. Since H2(X) ∼= π2(X) by Hurewicz, H2(X; Z/2) = H2(X) ⊗ Z2 is generated by
embedded 2-spheres. Suppose ι : S2 →֒ X is such an embedding. Then

ι∗w2(X) = w2(ι
∗TX) = w2(TS2 ⊕ νS2) = w2(νS2),

and hence
< w2(X), ι∗[S

2] >=< ι∗w2(X), [S2] >=< w2(νS2), [S2] > .

Thus w2(X) = 0 if and only if w2(νS2) = 0 for all such embedded S2’s. Now since νS2 is
orientable and dim νS2 ≥ 3, w2(νS2) = 0 if and only if νS2 is trivial. 2

Proof of proposition 6. Let X satisfy the conditions of the proposition, so that there
is a compact spin manifold W with ∂W = X ∐X0, where X0 is psc. It suffices to show that
X can be obtained from X0 by a series of surgeries in codimension at least 3.

By performing surgery on embedded circles in X0, we can kill off π1(X0); similarly,
we can assume that W is simply connected. Now by Lemma 7, all embedded spheres in
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W have trivial normal bundle, so that we can kill off π2(W ) by surgeries. It follows that
Hk(W,X) = 0 for k = 0, 1, 2. Then from the universal coefficient theorem on cohomology

0 −→ Ext1(Hk−1(W,X), Z) −→ Hk(W,X) −→ Hom(Hk(W,X), Z)

and Poincaré duality (see [8]) Hn−k(W,X0) ∼= Hk(W,X), we see that Hn−k(W,X0) = 0 for
k = 0, 1, and 2, and Hn−3(W,X0) is torsion-free.

There is a result of Smale [11] which is roughly as follows: if M is simply connected
in dimension at least 5, and the free part and the torsion part of Hi(M) is generated by
βi and αi elements, respectively, then there is a nondegenerate Morse function on M with
βi + αi + αi−1 critical points of index i. Adapted to this case, the result implies that there
is a Morse function f : W −→ [0, 1] with f |X0

= 0 and f |X1
= 1, all of whose critical points

lie in the interior of W and have index at most n − 3.
There is a result in Morse theory (see [8, p. 29]) which states that a level set just

above a critical point of index i is obtained from a level set just below the critical point by
performing surgery in dimension i. We conclude that X can be constructed from X0 by a
series of surgeries in codimension at least 3. 2

Proposition 8 (Gromov–Lawson) Every compact simply connected n-manifold with n ≥
5 which is not spin is psc.

Proof. Let X be such a manifold. This time, there is a compact oriented manifold W
with ∂W = X ∐X0, where X0 is psc. As before, we may assume that X0 and W are simply
connected. Then the second Stiefel-Whitney class gives a homomorphism w2 : π2(W ) ∼=
H2(W ) −→ Z2. Now by Lemma 7, w2 measures the nontriviality of the normal bundles to
the embedded spheres in π2(W ), so by surgery on S2’s, we can kill ker w2. On the other
hand, since X is not spin, the restriction of w2 to π2(X) is nontrivial; hence we may assume
that w2 is an isomorphism. This implies that the map π2(X) −→ π2(W ) ∼= Z2 is surjective,
so that H2(W,X) = 0. The proof now follows the proof of the previous proposition. 2

Corollary 9 (Gromov–Lawson) Every compact simply connected manifold of dimension
5, 6, or 7 is psc.

Proof. Ωspin
n

= 0 for n = 5, 6, or 7. 2

Thus for spin manifolds, psc descends to a condition on the spin cobordism ring Ωspin
∗

.
The Hitchin result (Proposition 3) shows that a necessary condition for a class in Ωspin

∗
to

be psc is that it have Â=0. Gromov and Lawson conjectured in [3] that this is a sufficient
condition, and proved that it is sufficient up to torsion: if Â(X) = 0, then some connected
sum X#X# · · ·#X is psc. Further partial results were obtained by Miyazaki, who showed
that X#X#X#X suffices, and Rosenberg, who showed that the conjecture was true in
dimensions ≤ 23; these results used explicit psc representatives of classes in Ωspin

∗
. Using

techniques from stable homotopy theory, Stolz [12] finally settled the conjecture in 1990.
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Proposition 10 (Gromov–Lawson–Stolz) A compact simply connected spin manifold X
of dimension at least 5 is psc if and only if Â(X) = 0.

This completes the classification of compact simply connected manifolds.

4 Manifolds with nontrivial fundamental group

The seminal paper in this direction is Gromov and Lawson [2]. First note that the cartesian
product of any manifold with S2 is psc, so that in dimension at least 6, the psc condition
places no restriction on the fundamental group of the manifold. On the other hand, the
fundamental group can guarantee that a manifold is not psc. Using minimal surfaces, Schoen
and Yau [9] proved the first result of this type: the torus T 3, and more generally any 3-
manifold whose fundamental group contains the fundamental group of a surface of positive
genus, is not psc.

A couple of definitions are necessary. Given ε > 0, a C1 map f : X −→ Y is defined
to be ε-contracting if ‖f∗v‖ ≤ ε‖v‖ for all v ∈ TX. A compact n-manifold is enlargeable if,
for every ε > 0, it has an orientable riemannian cover which admits an ε-contracting map
onto the standard n-sphere Sn(1) with constant curvature 1, which is constant outside some
compact set and of non-zero degree. (Intuitively, the covering manifold is “bigger” than
Sn(1) by a factor of at least 1/ε.) For instance, the flat torus R

n/Z
n is enlargeable: it is

covered by R
n/(kZ)n (k a positive integer), which maps onto Sn(1) by wrapping the n-disk

inscribed in [0, k]n around Sn(1), so that the boundary of the n-disk is mapped to one point,
and sending everything else to that same point.

There are large classes of manifolds which are enlargeable. Any 3-manifold whose fun-
damental group contains the fundamental group of a surface of positive genus is enlargeable,
as is any compact manifold admitting a metric of nonpositive sectional curvature. Any com-
pact solvmanifold is also enlargeable; a solvmanifold is by definition diffeomorphic to G/Γ
where G is a solvable Lie group and Γ is a discrete subgroup.

Proposition 11 (Gromov–Lawson) No enlargeable spin manifold (or enlargeable man-
ifold whose relevant covers are spin) is psc; in fact, any metric with nonnegative scalar
curvature on such a manifold must be flat.

Corollary 12 Any compact manifold which carries a metric of nonpositive (negative) sec-
tional curvature cannot carry a metric of positive (nonnegative) scalar curvature.

5 Group actions

Here is one more result, for variety.

Proposition 13 (Lawson–Yau [6]) Any compact manifold which admits an effective dif-
ferentiable action by a compact, connected, nonabelian Lie group is psc.
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