Classical and Modern Formulations of Curvature

Lenny Ng Mathematics 230a

January 1995

1 Introduction

In this paper, we will look at two different notions of curvature, one from a classical standpoint and one from a modern standpoint. These two notions intersect in the concept of the Gaussian curvature of a two-dimensional surface imbedded in \Re^3 . After briefly surveying the relevant classical and modern definitions and results, we present our main result, that the sectional curvature of a two-dimensional manifold is nothing more than the Gaussian curvature. We give four proofs of this result from four different standpoints. The first relies on the classical concept of a connection form; the second uses the classical shape operator; the third depends on local formulas for Christoffel symbols and curvature; the fourth applies a computational approach to a classical formula of Gauss.

2 Classical Formulation

Classically, we define the *directional* or *covariant derivative* of a vector field Y in \Re^{n+1} with respect to a vector x_p to be

$$\nabla_{x_p} Y = (Y \circ \alpha)'(0),$$

where α is any curve in \Re^{n+1} with $\alpha(0) = p$ and $\alpha'(0) = x_p$. It is straightforward to check that ∇ satisfies the following properties:

- (1) $\nabla_X(fY) = (Xf)Y + f\nabla_X Y$ (2) $\nabla_{fX}Y = f\nabla_X Y$ (3) $\nabla_X Y - \nabla_Y X = [X, Y]$
- (4) $X(Y \cdot Z) = \nabla_X Y \cdot Z + Y \cdot \nabla_X Z.$

(For instance, (4) is simply the Leibniz rule for dot products; to verify (3), note that both sides obey the Leibniz rule and that (3) is true for $X = \partial_i, Y = \partial_j$.)

Now consider an *n*-dimensional surface M embedded in \Re^{n+1} . We define the shape operator or Weingarten map $S_p: T_pM \to T_pM$ as follows:

$$S_p(v) = -\nabla_v(U).$$

Note that $S_p(v) \in T_pM$ since $2(U \cdot \nabla_v(U)) = \nabla_v(U \cdot U) = \nabla_v(1) = 0$. Thus S_p is a linear transformation on T_pM , and we may define det $S_p = K(p)$ to be the *Gauss-Kronecker curvature* of M at p. The mean curvature H(p) is similarly defined to be $\frac{1}{n}$ trace S_p .

Since U is only well defined up to a sign, the Gauss-Kronecker and mean curvature are in general not well defined. In the special case when n is even, however, det $S_p = \det(-S_p)$, so the Gauss-Kronecker curvature is well defined; when n = 2, the most important case classically, this is known as the *Gaussian curvature*.

One way to compute the Gaussian curvature is through the connection forms and structural equations (see, e.g., [2, p.312]). Let E_1, E_2 be a frame field around a point p on a two-dimensional surface M, that is, a pair of vector fields so that $E_1(q), E_2(q)$ is an orthonormal basis for T_qM for each qin a neighborhood of p. The connection forms ω_{ij} are the 1-forms defined by

$$\omega_{ij}(v) = \nabla_v E_i \cdot E_j(p).$$

Note that

$$\omega_{ij}(v) + \omega_{ji}(v) = \nabla_v E_i \cdot E_j + \nabla_v E_j \cdot E_i = v(E_i \cdot E_j) = 0,$$

so that $\omega_{11} = \omega_{22} = 0$ and $\omega_{12} = -\omega_{21}$. Let θ_1, θ_2 be the 1-forms dual to the frame field $\{E_1, E_2\}$, so that $\theta_i(v) = v \cdot E_i(p)$. The first structural equations state that

$$d\theta_1 = \omega_{12} \wedge \theta_2,$$

$$d\theta_2 = \omega_{21} \wedge \theta_1;$$

one form of the *second structural equation* gives us a way to compute Gaussian curvature:

$$d\omega_{12} = -K\theta_1 \wedge \theta_2.$$

3 Modern Formulation

Recall several definitions from the modern formulation of curvature.

The Levi-Civita connection on a Riemannian manifold (M, g) is the unique \Re -bilinear map $D: C^{\infty}(TM) \times C^{\infty}(TM) \to C^{\infty}(TM)$ such that

(1) $D_X(fY) = (Xf)Y + fD_XY$

 $(2) D_{fX}Y = fD_XY$

(3)
$$D_X Y - D_Y X = [X, Y]$$

(3) $D_X I = D_Y A = [A, I]$ (4) $Xg(Y,Z) = g(D_X Y,Z) + g(Y,D_X Z).$

Note that we use D instead of ∇ here to avoid confusion with the covariant derivative of Section 2.

The curvature tensor $R \in T^{1,3}M$ is given by

$$R(x,y)z = D_y(D_x z) - D_x(D_y z) + D_{[x,y]} z;$$

this produces a function $R \in T^{0,4}M$ defined by

$$R(x, y, z, w) = g(R(x, y)z, w).$$

The sectional curvature K(x, y) of M with respect to the plane spanned by $x, y \in T_pM$ is defined to be

$$K_p(x,y) = \frac{R(x,y,x,y)}{g(x,x)g(y,y) - g(x,y)^2};$$

this is independent of the choice of basis x, y for this particular 2-plane. Two other notions of curvature are Ricci and scalar curvature; if e_i is an orthonormal basis for T_pM , then

$$Ric_p(x, y) = \sum_i R(x, e_i, y, e_i)$$
$$Scal(p) = \sum_{i,j} R(e_i, e_j, e_i, e_j).$$

Also recall the following local definitions and formulas. If $\{x_1, \ldots, x_n\}$ is a local coordinate system around $p \in M$, we write $\partial_i = \partial/\partial x_i$ as the canonical basis for $T_p M$. The Christoffel symbols (of the second kind) Γ_{ij}^k are defined by $D_{\partial_i}\partial_j = \sum_k \Gamma_{ij}^k \partial_k$; the Christoffel formulas are

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l} g^{kl} (\partial_{i} g_{jl} + \partial_{j} g_{li} - \partial_{l} g_{ij}).$$

Also, if we write $R(\partial_i, \partial_j)\partial_k = \sum_l R_{ijk}^l \partial_l$, then

$$R_{ijk}^{l} = \partial_{i}\Gamma_{jk}^{l} - \partial_{j}\Gamma_{ik}^{l} + \sum_{p} (\Gamma_{jk}^{p}\Gamma_{ip}^{l} - \Gamma_{ik}^{p}\Gamma_{jp}^{l}).$$

Now let M be an *n*-dimensional orientable surface embedded in \Re^{n+1} with unit normal vector field U, and consider the classical case in which the scalar product g(x, y) is the usual dot product $x \cdot y$, i.e., endow M with the metric inherited from \Re^{n+1} . We wish to compute the Levi-Civita connection on M. Let ∇ be the covariant derivative defined previously; we define $D: C^{\infty}(TM) \times C^{\infty}(TM) \to C^{\infty}(TM)$ to be the tangential component of ∇ :

$$D_{x_p}Y = \nabla_{x_p}Y - (\nabla_{x_p}Y \cdot U)U.$$

By taking tangential components of the properties of ∇ from Section 2, it is straightforward to check that D satisfies the conditions to be a Levi-Civita connection. We then define the curvature tensor and the various notions of curvature from this Levi-Civita connection.

4 Gaussian Curvature

In the special case in which M is a 2-dimensional surface, the sectional curvature $K_p(x, y) = K_p$ is the same for all $x, y \in T_p M$. Also, if $\{E_1, E_2\}$ is a frame field (a set of orthonormal vector fields) around p, and $x = x_1 E_1 + x_2 E_2$, $y = y_1 E_1 + y_2 E_2$, then

$$Ric_{p}(x,y) = R(x_{2}E_{2}, E_{1}, y_{2}E_{2}, E_{1}) + R(x_{1}E_{1}, E_{2}, y_{1}E_{1}, E_{2})$$

= $(x_{1}y_{1} + x_{2}y_{2})K_{p}(E_{1}, E_{2})$
= $g(x, y)K_{p}(E_{1}, E_{2}),$

and

$$Scal(p) = R(E_1, E_2, E_1, E_2) + R(E_2, E_1, E_2, E_1) = 2K_p(E_1, E_2).$$

Our main result tying together the classical and modern formulations of curvature will be that the sectional curvature on a 2-surface is simply the Gaussian curvature.

Theorem For a 2-surface M, the sectional curvature $K_p(x, y)$ is equal to the Gaussian curvature K(p).

In the four subsequent sections, we will present four different proofs of this theorem; they are roughly in order from most global to most local.

Note that the theorem implies that $Ric_p(x, y) = g(x, y)K(p)$ and Scal(p) = 2K(p). Myers's Theorem, which involves Ricci curvature, and Synge's Theorem, which involves sectional curvature, thus reduce to the following results.

Corollary 1 Let M be a complete two-dimensional manifold, and suppose that there exists an r > 0 such that $K(p) \ge r^{-2}$ for all $p \in M$. Then diam $M \le \text{diam}(S^2(r))$. In particular, M is compact with finite fundamental group.

Note that $K \equiv 1/r^2$ on $S^2(r)$.

Corollary 2 If M is a compact orientable two-dimensional manifold such that K(p) > 0 for all $p \in M$, then M has genus zero.

This last corollary is also implied by the Gauss-Bonnet Theorem.

5 First Proof

I could not find a reference for this proof.

We will use the connection forms and the structural equations from Section 2. Let M be a two-dimensional surface in \Re^3 and let E_1, E_2 be a frame field on M, with θ_1, θ_2 its dual basis of 1-forms; define the connection forms ω_{ij} from this frame field. Note that $\omega_{ij}(v) = \nabla_v E_i \cdot E_j = D_v E_i \cdot E_j$ since $U \cdot E_j = 0$. For the rest of this section, we will be using computations made entirely on the surface itself; since we will thus not need covariant derivatives, we will denote the Levi-Civita connection by ∇ , as is customary, rather than by D. (In the subsequent proofs, however, we will be using both covariant derivative and Levi-Civita connection; they will be denoted, as before, by ∇ and D, respectively.)

We need the following lemma, which expresses Gaussian curvature explicitly in terms of the connection form ω_{12} .

Lemma 1
$$K(p) = E_2(\omega_{12}(E_1)) - E_1(\omega_{12}(E_2)) - (\omega_{12}(E_1))^2 - (\omega_{12}(E_2))^2.$$

PROOF. A simple calculation shows that we can write ω_{12} as

$$\omega_{12} = \omega_{12}(E_1)\theta_1 + \omega_{12}(E_2)\theta_2.$$

Likewise, we have

$$d(\omega_{12}(E_1)) = d(\omega_{12}(E_1))(E_1)\theta_1 + d(\omega_{12}(E_2))(E_2)\theta_2$$

= $E_1(\omega_{12}(E_1))\theta_1 + E_2(\omega_{12}(E_1))\theta_2,$

with a similar expression for $D(\omega_{12}(E_2))$. Hence

$$d\omega_{12} = d(\omega_{12}(E_1)) \wedge \theta_1 + d(\omega_{12}(E_2)) \wedge \theta_2 + \omega_{12}(E_1)d\theta_1 + \omega_{12}(E_2)d\theta_2$$

= $E_2(\omega_{12}(E_1))\theta_2 \wedge \theta_1 + E_1(\omega_{12})(E_2))\theta_1 \wedge \theta_2 + \omega_{12}(E_1)\omega_{12} \wedge \theta_2 - \omega_{12}(E_2)\omega_{12} \wedge \theta_1$
= $(-E_2(\omega_{12}(E_1)) + E_1(\omega_{12}(E_2)) + (\omega_{12}(E_1))^2 + (\omega_{12}(E_2))^2)\theta_1 \wedge \theta_2,$

where we have used the first structural equations to evaluate $d\theta_1$ and $d\theta_2$; the lemma then follows from the second structural equation. \Box

PROOF OF THEOREM. Since $\nabla_{E_1}E_1 \cdot E_1 = \omega_{11}(E_1) = 0$ and $\nabla_{E_2}E_2 \cdot E_2 = \omega_{22}(E_2) = 0$, $\nabla_{E_1}E_1$ is a multiple of E_2 while $\nabla_{E_2}E_2$ is a multiple of E_1 , so $(\nabla_{E_1}E_1) \cdot (\nabla_{E_2}E_2) = 0$. Similarly, $(\nabla_{E_2}E_1) \cdot (\nabla_{E_1}E_2) = 0$; also note that

$$[E_1, E_2] = \nabla_{E_1} E_2 - \nabla_{E_2} E_1 = ((\nabla_{E_1} E_2 - \nabla_{E_2} E_1) \cdot E_1) E_1 + ((\nabla_{E_1} E_2 - \nabla_{E_2} E_1) \cdot E_2) E_2 = (\omega_{21}(E_1) - \omega_{11}(E_2)) E_1 + (\omega_{22}(E_1) - \omega_{12}(E_2)) E_2 = -\omega_{12}(E_1) E_1 - \omega_{12}(E_2) E_2.$$

Hence the sectional curvature is equal to

$$\begin{split} K_p(E_1, E_2) &= R(E_1, E_2)E_1 \cdot E_2 \\ &= \nabla_{E_2} \nabla_{E_1} E_1 \cdot E_2 - \nabla_{E_1} \nabla_{E_2} E_1 \cdot E_2 + \nabla_{[E_1, E_2]} E_1 \cdot E_2 \\ &= (\nabla_{E_2} \nabla_{E_1} E_1 \cdot E_2 + (\nabla_{E_1} E_1) \cdot (\nabla_{E_2} E_2)) - \\ &- (\nabla_{E_1} \nabla_{E_2} E_1 \cdot E_2 + (\nabla_{E_2} E_1) \cdot (\nabla_{E_1} E_2)) + \nabla_{[E_1, E_2]} E_1 \cdot E_2 \\ &= E_2 (\nabla_{E_1} E_1 \cdot E_2) - E_1 (\nabla_{E_2} E_1 \cdot E_2) - \omega_{12} (E_1) \nabla_{E_1} E_1 \cdot E_2 - \\ &- \omega_{12} (E_2) \nabla_{E_2} E_1 \cdot E_2 \\ &= E_2 (\omega_{12} (E_1)) - E_1 (\omega_{12} (E_2)) - (\omega_{12} (E_1))^2 - (\omega_{12} (E_2))^2 \\ &= K(p), \end{split}$$

as desired. \square

6 Second Proof

This proof is adapted from the method in [4, pp. 227-230].

Let M be an orientable *n*-dimensional manifold embedded in \Re^{n+1} with unit normal vector field U; we will specialize later to the case n = 2. Again, we will use ∇ and D to represent the covariant derivative and the Levi-Civita connection, respectively. Define $R' \in T^{1,3}(M)$ by

$$R'(x,y)z = (S_p(x) \cdot z)S_p(y) - (S_p(y) \cdot z)S_p(x).$$

Recall that $R \in T^{1,3}(M)$ is defined by

$$R(x,y)z = D_y(D_x z) - D_x(D_y z) + D_{[x,y]} z.$$

Let $\{\partial_1, \ldots, \partial_n\}$ be the canonical basis for T_pM . We will need a lemma; note that this lemma implies that R(x, y, z) = R'(x, y, z) for all $x, y, z \in TM$, so that we have, as a bonus, a formula for the curvature tensor in terms of the classical shape operator.

Lemma 2 If $z \in T_pM$, then $R'(\partial_i, \partial_j, z) = R(\partial_i, \partial_j, z)$.

PROOF. Since $(\nabla_{\partial_j} z) \cdot U + (\nabla_{\partial_j} U) \cdot z = U \cdot z = 0$, we have

$$\begin{aligned} \nabla_{\partial_i} \nabla_{\partial_j} z &= \nabla_{\partial_i} (D_{\partial_j} z + ((\nabla_{\partial_j} z) \cdot U)U) \\ &= D_{\partial_i} D_{\partial_j} z + ((\nabla_{\partial_i} (D_{\partial_j} z)) \cdot U)U + \nabla_{\partial_i} (((\nabla_{\partial_j} z) \cdot U))U \\ &= D_{\partial_i} D_{\partial_j} z + ((\nabla_{\partial_i} (D_{\partial_j} z)) \cdot U)U - ((\nabla_{\partial_j} U) \cdot z) \nabla_{\partial_i} U \\ &= D_{\partial_i} D_{\partial_j} z + ((\nabla_{\partial_i} (D_{\partial_j} z)) \cdot U)U - ((S_p \partial_j) \cdot z) S_p \partial_i. \end{aligned}$$

Now the first and third terms of this expression are in T_pM , while the second is normal to the surface, so the tangential component of $\nabla_{\partial_i} \nabla_{\partial_j} z$ is $D_{\partial_i} D_{\partial_j} z - ((S_p \partial_j) \cdot z) S_p \partial_i$. Similarly, the tangential component of $\nabla_{\partial_j} \nabla_{\partial_i} z$ is $D_{\partial_j} D_{\partial_i} z - ((S_p \partial_i) \cdot z) S_p \partial_j$. But by definition, we have that

$$\nabla_{\partial_j} z = (z \circ \alpha)'(0) = \frac{\partial z}{\partial x_j}$$

where $\alpha'(0) = \partial_j$, so

$$\nabla_{\partial_i} \nabla_{\partial_j} z = \frac{\partial^2}{\partial x_i \partial x_j} z = \frac{\partial^2}{\partial x_j \partial x_i} z = \nabla_{\partial_j} \nabla_{\partial_i} z;$$

taking tangential components and rearranging, we conclude that

$$D_{\partial_i} D_{\partial_j} z - D_{\partial_j} D_{\partial_i} z = ((S_p \partial_i) \cdot z) S_p \partial_j - ((S_p \partial_j) \cdot z) S_p \partial_i = R'(\partial_i, \partial_j) z.$$

Finally, since $[\partial_i, \partial_j] = 0$, we obtain

$$R(\partial_i, \partial_j)z = D_{\partial_i} D_{\partial_j} z - D_{\partial_j} D_{\partial_i} z,$$

whence the lemma. \Box

PROOF OF THEOREM. Let M have dimension 2. Since K(x, y) is independent of the basis x, y chosen, it suffices to show that $K_p(\partial_1, \partial_2) = K(p)$. But by Lemma 2,

$$(g_{11}g_{22} - g_{12}^2)K_p(\partial_1, \partial_2) = R(\partial_1, \partial_2)\partial_1 \cdot \partial_2$$

= $R'(\partial_1, \partial_2)\partial_1 \cdot \partial_2$
= $(S_p(\partial_1) \cdot \partial_1)(S_p(\partial_2) \cdot \partial_2) - (S_p(\partial_2) \cdot \partial_1)(S_p(\partial_1) \cdot \partial_2)$
= $(g_{11}g_{22} - g_{12}^2) \det S_p$
= $(g_{11}g_{22} - g_{12}^2)K(p);$

the theorem follows. \Box

7 Third Proof

This proof is essentially a version of the previous proof in local coordinates. In the course of the proof, we obtain and use the so-called Gauss's formulas.

PROOF OF THEOREM. We loosely follow the notation of [1]. As in the previous proof, we first assume that M is *n*-dimensional embedded in \Re^{n+1} ; later we will set n = 2.

Let $b_{jk} = S_p(\partial_j) \cdot \partial_k$. We wish to express $\nabla_{\partial_j} \partial_k$ in terms of the ∂_l 's and of U. Now the tangential component of $\nabla_{\partial_j} \partial_k$ is given by $D_{\partial_j} \partial_k = \sum_l \Gamma_{jk}^l \partial_l$; the normal component is $\nabla_{\partial_j} \partial_k \cdot U = \partial_j (\partial_k \cdot U) - \nabla_{\partial_j} U \cdot \partial_k = S_p(\partial_j) \cdot \partial_k = b_{jk}$. Hence

$$\nabla_{\partial_j}\partial_k = \sum_l \Gamma^l_{jk}\partial_l + b_{jk}U;$$

in [1], these equations are known as Gauss's formulas. Next, from the formulas $S_p(\partial_i) \cdot \partial_p = b_{ip}$ and the fact that $S_p(\partial_i) \in T_p M$, we conclude that

$$-\nabla_{\partial_i} U = S_p(\partial_i) = \sum_{l,p} b_{ip} g^{pl} \partial_l.$$

Now, as in the previous proof, we know that

$$\nabla_{\partial_i} \nabla_{\partial_j} \partial_k = \nabla_{\partial_j} \nabla_{\partial_i} \partial_k.$$

But applying ∇_{∂_i} to Gauss's formulas gives

$$\begin{aligned} \nabla_{\partial_i} \nabla_{\partial_j} \partial_k &= (\partial_i \Gamma^l_{jk}) \partial_l + \Gamma^l_{jk} \nabla_{\partial_i} \partial_l + (\partial_i b_{jk}) U + b_{jk} \nabla_{\partial_i} U \\ &= (\partial_i \Gamma^l_{jk}) \partial_l + \Gamma^l_{jk} \Gamma^p_{il} \partial_p + \Gamma^l_{jk} b_{il} U + (\partial_i b_{jk}) U - b_{jk} b_{ip} g^{pl} \partial_l \\ &= (\partial_i \Gamma^l_{jk} + \Gamma^p_{jk} \Gamma^l_{ip} - b_{jk} b_{ip} g^{pl}) \partial_l + (\text{multiple of } U), \end{aligned}$$

where we have used Einstein summation convention for notational ease. Interchanging i and j gives

$$\nabla_{\partial_j} \nabla_{\partial_i} \partial_k = (\partial_j \Gamma^l_{ik} + \Gamma^p_{ik} \Gamma^l_{jp} - b_{ik} b_{jp} g^{pl}) \partial_l + (\text{multiple of } U).$$

Since $\partial_1, \ldots, \partial_n, U$ are linearly independent, we may equate the components of ∂_l in these last two equations. When we do this and use the local formula for R_{ijk}^l from Section 3, we obtain

$$R_{ijk}^l = \sum_p (b_{ik}b_{jp} - b_{jk}b_{ip})g^{pl}.$$

Hence if we write $R_{ijkl} = R(\partial_i, \partial_j)\partial_k \cdot \partial_l$, then since $R(\partial_i, \partial_j)\partial_k = \sum_p R^p_{ijk}\partial_p$, we get

$$R_{ijkl} = b_{ik}b_{jl} - b_{jk}b_{il}.$$

In two dimensions, it is customary to write $b_{11} = \ell$, $b_{12} = b_{21} = m$, $b_{22} = n$, and $\partial_1 \cdot \partial_1 = g_{11} = E$, $\partial_1 \cdot \partial_2 = g_{12} = g_{21} = F$, $\partial_2 \cdot \partial_2 = g_{22} = G$; then the Gaussian curvature is given by $K(p) = \det S_p = \frac{\ell n - m^2}{EG - F^2}$, and

$$R_{1212} = b_{11}b_{22} - b_{12}^2 = \ell n - m^2,$$

so that

$$K(\partial_1, \partial_2) = \frac{R_{1212}}{g_{11}g_{22} - g_{12}^2} = \frac{\ell n - m^2}{EG - F^2} = K(p),$$

as desired. \Box

8 Fourth Proof (outline)

Since curvature is an intrinsic measurement of the surface, our theorem essentially proves Gauss's *Theorema Egregium*, which in one form states that the Gaussian curvature of a surface is intrinsic, i.e., it can be measured without leaving the surface. In our last proof, we use a formula Gauss derived in his original proof of the *Theorema Egregium*, expressing Gaussian curvature solely in terms of E, F, G, and their derivatives.

PROOF OF THEOREM. We use the approach of [3, pp. 193-195]. Since the sectional curvature is $\frac{R_{1212}}{EG-F^2}$, it suffices to show that

$$4(EG - F^2)R_{1212} = 4(EG - F^2)^2K.$$

Let E_1 denote $\partial_1 E$, F_{12} denote $\partial_2 \partial_1 F$, and so forth. We use the following result of Gauss [3, p. 111]:

$$4(EG-F^2)^2 K = \begin{vmatrix} -2G_{11} + 4F_{12} - 2E_{22} & E_1 & 2F_1 - E_2 \\ 2F_2 - G_1 & E & F \\ G_2 & F & G \end{vmatrix} - \begin{vmatrix} 0 & E_2 & G_1 \\ E_2 & E & F \\ G_1 & F & G \end{vmatrix}$$

Hence we need to show that $4(EG - F^2)R_{1212}$ is equal to this difference of determinants. To do this, we evaluate the Christoffel symbols Γ_{ij}^k using the Christoffel equations (where $g^{11} = \frac{G}{EG-F^2}$, $g^{12} = g^{21} = -\frac{F}{EG-F^2}$, and $g^{22} = \frac{E}{EG-F^2}$); we find that

$$\begin{split} \Gamma_{11}^{1} &= \frac{GE_{1} - 2FF_{1} + FE_{2}}{2(EG - F^{2})}, \\ \Gamma_{11}^{1} &= \frac{-FE_{1} + 2EF_{1} - EE_{2}}{2(EG - F^{2})}, \\ \Gamma_{12}^{1} &= \Gamma_{21}^{1} = \frac{GE_{2} - FG_{1}}{2(EG - F^{2})}, \\ \Gamma_{12}^{1} &= \Gamma_{21}^{1} = \frac{GE_{2} - FG_{1}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{22}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - FG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - GG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - GG_{2}}{2(EG - F^{2})}, \\ \Gamma_{23}^{1} &= \frac{2GF_{2} - GG_{1} - GG_{2}}{2(EG - F^{2})}, \\ \Gamma_{24}^{1} &= \frac{2GF_{2} - GG_{1} - GG_{2}}{2(EG - F^{2})}, \\ \Gamma_{24}^{1} &= \frac{2GF_{2} - GG_{1} - GG_{2}}{2(EG - F^{2})}, \\ \Gamma_{24}^{1} &= \frac{2GF_{2} - GG_{1} - GG_{2}}{2(EG - F^{2})}, \\ \Gamma_{24}^{1} &= \frac{2GF_{2} - GG_{1} - GG_{2}}{2(EG - F^{2})}, \\ \Gamma_{24}^{1} &= \frac{2GF_{2} - GG_{2}}{2(EG - F^{2})}, \\ \Gamma_{24}^{1} &= \frac{2GF_{2} - GG_{2$$

To evaluate R_{1212} , we use the local formulas

$$\begin{aligned} R_{121}^1 &= \partial_1 \Gamma_{21}^1 - \partial_2 \Gamma_{11}^1 + \Gamma_{21}^2 \Gamma_{12}^1 - \Gamma_{11}^2 \Gamma_{22}^1, \\ R_{121}^2 &= \partial_1 \Gamma_{21}^2 - \partial_2 \Gamma_{11}^2 + \Gamma_{21}^1 \Gamma_{11}^2 - \Gamma_{11}^1 \Gamma_{21}^2 + \Gamma_{21}^2 \Gamma_{12}^2 - \Gamma_{11}^2 \Gamma_{22}^2, \\ R_{1212}^2 &= (R_{121}^1 \partial_1 + R_{121}^2 \partial_2) \cdot \partial_2 = F R_{121}^1 + G R_{121}^2. \end{aligned}$$

We omit this long and tedious calculation; the value which results for $4(EG - F^2)R_{1212}$ is precisely the desired difference of determinants. \Box

References

- [1] Kreyszig, Erwin, Introduction to Differential Geometry and Riemannian Geometry (Toronto, University of Toronto Press, 1968).
- [2] O'Neill, Barrett, *Elementary Differential Geometry* (San Diego, Academic Press, 1966).
- [3] Spivak, Michael, A Comprehensive Introduction to Differential Geometry, vol. 2, 2nd ed. (Berkeley, Publish or Perish, 1979).
- [4] Thorpe, John A., *Elementary Topics in Differential Geometry* (New York, Springer-Verlag, 1979).