
Classical and Modern Formulations of

Curvature

Lenny Ng
Mathematics 230a

January 1995

1 Introduction

In this paper, we will look at two different notions of curvature, one from
a classical standpoint and one from a modern standpoint. These two no-
tions intersect in the concept of the Gaussian curvature of a two-dimensional
surface imbedded in ℜ3. After briefly surveying the relevant classical and
modern definitions and results, we present our main result, that the sectional
curvature of a two-dimensional manifold is nothing more than the Gaussian
curvature. We give four proofs of this result from four different standpoints.
The first relies on the classical concept of a connection form; the second uses
the classical shape operator; the third depends on local formulas for Christof-
fel symbols and curvature; the fourth applies a computational approach to a
classical formula of Gauss.

2 Classical Formulation

Classically, we define the directional or covariant derivative of a vector field
Y in ℜn+1 with respect to a vector xp to be

∇xp
Y = (Y ◦ α)′(0),

where α is any curve in ℜn+1 with α(0) = p and α′(0) = xp. It is straight-
forward to check that ∇ satisfies the following properties:
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(1) ∇X(fY ) = (Xf)Y + f∇XY
(2) ∇fXY = f∇XY
(3) ∇XY −∇Y X = [X,Y ]
(4) X(Y · Z) = ∇XY · Z + Y · ∇XZ.

(For instance, (4) is simply the Leibniz rule for dot products; to verify (3),
note that both sides obey the Leibniz rule and that (3) is true for X =
∂i, Y = ∂j.)

Now consider an n-dimensional surface M embedded in ℜn+1. We define
the shape operator or Weingarten map Sp : TpM → TpM as follows:

Sp(v) = −∇v(U).

Note that Sp(v) ∈ TpM since 2(U · ∇v(U)) = ∇v(U · U) = ∇v(1) = 0. Thus
Sp is a linear transformation on TpM , and we may define det Sp = K(p) to
be the Gauss-Kronecker curvature of M at p. The mean curvature H(p) is
similarly defined to be 1

n
trace Sp.

Since U is only well defined up to a sign, the Gauss-Kronecker and mean
curvature are in general not well defined. In the special case when n is
even, however, det Sp = det(−Sp), so the Gauss-Kronecker curvature is well
defined; when n = 2, the most important case classically, this is known as
the Gaussian curvature.

One way to compute the Gaussian curvature is through the connection
forms and structural equations (see, e.g., [2, p.312]). Let E1, E2 be a frame

field around a point p on a two-dimensional surface M , that is, a pair of
vector fields so that E1(q), E2(q) is an orthonormal basis for TqM for each q
in a neighborhood of p. The connection forms ωij are the 1-forms defined by

ωij(v) = ∇vEi · Ej(p).

Note that

ωij(v) + ωji(v) = ∇vEi · Ej + ∇vEj · Ei = v(Ei · Ej) = 0,

so that ω11 = ω22 = 0 and ω12 = −ω21. Let θ1, θ2 be the 1-forms dual to the
frame field {E1, E2}, so that θi(v) = v · Ei(p). The first structural equations

state that
dθ1 = ω12 ∧ θ2,

dθ2 = ω21 ∧ θ1;
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one form of the second structural equation gives us a way to compute Gaussian
curvature:

dω12 = −Kθ1 ∧ θ2.

3 Modern Formulation

Recall several definitions from the modern formulation of curvature.
The Levi-Civita connection on a Riemannian manifold (M, g) is the unique

ℜ-bilinear map D : C∞(TM) × C∞(TM) → C∞(TM) such that
(1) DX(fY ) = (Xf)Y + fDXY
(2) DfXY = fDXY
(3) DXY − DY X = [X,Y ]
(4) Xg(Y, Z) = g(DXY, Z) + g(Y,DXZ).

Note that we use D instead of ∇ here to avoid confusion with the covariant
derivative of Section 2.

The curvature tensor R ∈ T 1,3M is given by

R(x, y)z = Dy(Dxz) − Dx(Dyz) + D[x,y]z;

this produces a function R ∈ T 0,4M defined by

R(x, y, z, w) = g(R(x, y)z, w).

The sectional curvature K(x, y) of M with respect to the plane spanned by
x, y ∈ TpM is defined to be

Kp(x, y) =
R(x, y, x, y)

g(x, x)g(y, y) − g(x, y)2
;

this is independent of the choice of basis x, y for this particular 2-plane.
Two other notions of curvature are Ricci and scalar curvature; if ei is an
orthonormal basis for TpM , then

Ricp(x, y) =
∑

i

R(x, ei, y, ei)

Scal(p) =
∑

i,j

R(ei, ej, ei, ej).
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Also recall the following local definitions and formulas. If {x1, . . . , xn} is a
local coordinate system around p ∈ M , we write ∂i = ∂/∂xi as the canonical
basis for TpM . The Christoffel symbols (of the second kind) Γk

ij are defined
by D∂i

∂j =
∑

k Γk
ij∂k; the Christoffel formulas are

Γk
ij =

1

2

∑

l

gkl(∂igjl + ∂jgli − ∂lgij).

Also, if we write R(∂i, ∂j)∂k =
∑

l R
l
ijk∂l, then

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik +

∑

p

(Γp
jkΓ

l
ip − Γp

ikΓ
l
jp).

Now let M be an n-dimensional orientable surface embedded in ℜn+1

with unit normal vector field U , and consider the classical case in which the
scalar product g(x, y) is the usual dot product x · y, i.e., endow M with the
metric inherited from ℜn+1. We wish to compute the Levi-Civita connec-
tion on M . Let ∇ be the covariant derivative defined previously; we define
D : C∞(TM)×C∞(TM) → C∞(TM) to be the tangential component of ∇:

Dxp
Y = ∇xp

Y − (∇xp
Y · U)U.

By taking tangential components of the properties of ∇ from Section 2, it is
straightforward to check that D satisfies the conditions to be a Levi-Civita
connection. We then define the curvature tensor and the various notions of
curvature from this Levi-Civita connection.

4 Gaussian Curvature

In the special case in which M is a 2-dimensional surface, the sectional cur-
vature Kp(x, y) = Kp is the same for all x, y ∈ TpM . Also, if {E1, E2} is a
frame field (a set of orthonormal vector fields) around p, and x = x1E1+x2E2,
y = y1E1 + y2E2, then

Ricp(x, y) = R(x2E2, E1, y2E2, E1) + R(x1E1, E2, y1E1, E2)

= (x1y1 + x2y2)Kp(E1, E2)

= g(x, y)Kp(E1, E2),
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and

Scal(p) = R(E1, E2, E1, E2) + R(E2, E1, E2, E1) = 2Kp(E1, E2).

Our main result tying together the classical and modern formulations of
curvature will be that the sectional curvature on a 2-surface is simply the
Gaussian curvature.

Theorem For a 2-surface M , the sectional curvature Kp(x, y) is equal to

the Gaussian curvature K(p).

In the four subsequent sections, we will present four different proofs of this
theorem; they are roughly in order from most global to most local.

Note that the theorem implies that Ricp(x, y) = g(x, y)K(p) and Scal(p) =
2K(p). Myers’s Theorem, which involves Ricci curvature, and Synge’s Theo-
rem, which involves sectional curvature, thus reduce to the following results.

Corollary 1 Let M be a complete two-dimensional manifold, and suppose

that there exists an r > 0 such that K(p) ≥ r−2 for all p ∈ M . Then

diam M ≤ diam (S2(r)). In particular, M is compact with finite fundamental

group.

Note that K ≡ 1/r2 on S2(r).

Corollary 2 If M is a compact orientable two-dimensional manifold such

that K(p) > 0 for all p ∈ M , then M has genus zero.

This last corollary is also implied by the Gauss-Bonnet Theorem.

5 First Proof

I could not find a reference for this proof.
We will use the connection forms and the structural equations from Sec-

tion 2. Let M be a two-dimensional surface in ℜ3 and let E1, E2 be a frame
field on M , with θ1, θ2 its dual basis of 1-forms; define the connection forms
ωij from this frame field. Note that ωij(v) = ∇vEi · Ej = DvEi · Ej since
U · Ej = 0. For the rest of this section, we will be using computations made
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entirely on the surface itself; since we will thus not need covariant derivatives,
we will denote the Levi-Civita connection by ∇, as is customary, rather than
by D. (In the subsequent proofs, however, we will be using both covariant
derivative and Levi-Civita connection; they will be denoted, as before, by ∇
and D, respectively.)

We need the following lemma, which expresses Gaussian curvature ex-
plicitly in terms of the connection form ω12.

Lemma 1 K(p) = E2(ω12(E1)) − E1(ω12(E2)) − (ω12(E1))
2 − (ω12(E2))

2.

Proof. A simple calculation shows that we can write ω12 as

ω12 = ω12(E1)θ1 + ω12(E2)θ2.

Likewise, we have

d(ω12(E1)) = d(ω12(E1))(E1)θ1 + d(ω12(E2))(E2)θ2

= E1(ω12(E1))θ1 + E2(ω12(E1))θ2,

with a similar expression for D(ω12(E2)). Hence

dω12 = d(ω12(E1)) ∧ θ1 + d(ω12(E2)) ∧ θ2 + ω12(E1)dθ1 + ω12(E2)dθ2

= E2(ω12(E1))θ2 ∧ θ1 + E1(ω12)(E2))θ1 ∧ θ2 + ω12(E1)ω12 ∧ θ2 −

−ω12(E2)ω12 ∧ θ1

= (−E2(ω12(E1)) + E1(ω12(E2)) + (ω12(E1))
2 + (ω12(E2))

2)θ1 ∧ θ2,

where we have used the first structural equations to evaluate dθ1 and dθ2;
the lemma then follows from the second structural equation. 2

Proof of Theorem. Since ∇E1
E1 · E1 = ω11(E1) = 0 and ∇E2

E2 · E2 =
ω22(E2) = 0, ∇E1

E1 is a multiple of E2 while ∇E2
E2 is a multiple of E1, so

(∇E1
E1) · (∇E2

E2) = 0. Similarly, (∇E2
E1) · (∇E1

E2) = 0; also note that

[E1, E2] = ∇E1
E2 −∇E2

E1

= ((∇E1
E2 −∇E2

E1) · E1)E1 + ((∇E1
E2 −∇E2

E1) · E2)E2

= (ω21(E1) − ω11(E2))E1 + (ω22(E1) − ω12(E2))E2

= −ω12(E1)E1 − ω12(E2)E2.
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Hence the sectional curvature is equal to

Kp(E1, E2) = R(E1, E2)E1 · E2

= ∇E2
∇E1

E1 · E2 −∇E1
∇E2

E1 · E2 + ∇[E1,E2]E1 · E2

= (∇E2
∇E1

E1 · E2 + (∇E1
E1) · (∇E2

E2)) −

−(∇E1
∇E2

E1 · E2 + (∇E2
E1) · (∇E1

E2)) + ∇[E1,E2]E1 · E2

= E2(∇E1
E1 · E2) − E1(∇E2

E1 · E2) − ω12(E1)∇E1
E1 · E2 −

−ω12(E2)∇E2
E1 · E2

= E2(ω12(E1)) − E1(ω12(E2)) − (ω12(E1))
2 − (ω12(E2))

2

= K(p),

as desired. 2

6 Second Proof

This proof is adapted from the method in [4, pp. 227-230].
Let M be an orientable n-dimensional manifold embedded in ℜn+1 with

unit normal vector field U ; we will specialize later to the case n = 2. Again,
we will use ∇ and D to represent the covariant derivative and the Levi-Civita
connection, respectively. Define R′ ∈ T 1,3(M) by

R′(x, y)z = (Sp(x) · z)Sp(y) − (Sp(y) · z)Sp(x).

Recall that R ∈ T 1,3(M) is defined by

R(x, y)z = Dy(Dxz) − Dx(Dyz) + D[x,y]z.

Let {∂1, . . . , ∂n} be the canonical basis for TpM . We will need a lemma; note
that this lemma implies that R(x, y, z) = R′(x, y, z) for all x, y, z ∈ TM , so
that we have, as a bonus, a formula for the curvature tensor in terms of the
classical shape operator.

Lemma 2 If z ∈ TpM , then R′(∂i, ∂j, z) = R(∂i, ∂j, z).
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Proof. Since (∇∂j
z) · U + (∇∂j

U) · z = U · z = 0, we have

∇∂i
∇∂j

z = ∇∂i
(D∂j

z + ((∇∂j
z) · U)U)

= D∂i
D∂j

z + ((∇∂i
(D∂j

z)) · U)U + ∇∂i
(((∇∂j

z) · U))U

= D∂i
D∂j

z + ((∇∂i
(D∂j

z)) · U)U − ((∇∂j
U) · z)∇∂i

U

= D∂i
D∂j

z + ((∇∂i
(D∂j

z)) · U)U − ((Sp∂j) · z)Sp∂i.

Now the first and third terms of this expression are in TpM , while the second
is normal to the surface, so the tangential component of ∇∂i

∇∂j
z is D∂i

D∂j
z−

((Sp∂j) ·z)Sp∂i. Similarly, the tangential component of ∇∂j
∇∂i

z is D∂j
D∂i

z−
((Sp∂i) · z)Sp∂j. But by definition, we have that

∇∂j
z = (z ◦ α)′(0) =

∂z

∂xj

where α′(0) = ∂j, so

∇∂i
∇∂j

z =
∂2

∂xi∂xj

z =
∂2

∂xj∂xi

z = ∇∂j
∇∂i

z;

taking tangential components and rearranging, we conclude that

D∂i
D∂j

z − D∂j
D∂i

z = ((Sp∂i) · z)Sp∂j − ((Sp∂j) · z)Sp∂i

= R′(∂i, ∂j)z.

Finally, since [∂i, ∂j] = 0, we obtain

R(∂i, ∂j)z = D∂i
D∂j

z − D∂j
D∂i

z,

whence the lemma. 2

Proof of Theorem. Let M have dimension 2. Since K(x, y) is indepen-
dent of the basis x, y chosen, it suffices to show that Kp(∂1, ∂2) = K(p). But
by Lemma 2,

(g11g22 − g2
12)Kp(∂1, ∂2) = R(∂1, ∂2)∂1 · ∂2

= R′(∂1, ∂2)∂1 · ∂2

= (Sp(∂1) · ∂1)(Sp(∂2) · ∂2) − (Sp(∂2) · ∂1)(Sp(∂1) · ∂2)

= (g11g22 − g2
12) det Sp

= (g11g22 − g2
12)K(p);

the theorem follows. 2
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7 Third Proof

This proof is essentially a version of the previous proof in local coordinates.
In the course of the proof, we obtain and use the so-called Gauss’s formulas.

Proof of Theorem. We loosely follow the notation of [1]. As in the
previous proof, we first assume that M is n-dimensional embedded in ℜn+1;
later we will set n = 2.

Let bjk = Sp(∂j) ·∂k. We wish to express ∇∂j
∂k in terms of the ∂l’s and of

U . Now the tangential component of ∇∂j
∂k is given by D∂j

∂k =
∑

l Γ
l
jk∂l; the

normal component is ∇∂j
∂k · U = ∂j(∂k · U) −∇∂j

U · ∂k = Sp(∂j) · ∂k = bjk.
Hence

∇∂j
∂k =

∑

l

Γl
jk∂l + bjkU ;

in [1], these equations are known as Gauss’s formulas. Next, from the for-
mulas Sp(∂i) · ∂p = bip and the fact that Sp(∂i) ∈ TpM, we conclude that

−∇∂i
U = Sp(∂i) =

∑

l,p

bipg
pl∂l.

Now, as in the previous proof, we know that

∇∂i
∇∂j

∂k = ∇∂j
∇∂i

∂k.

But applying ∇∂i
to Gauss’s formulas gives

∇∂i
∇∂j

∂k = (∂iΓ
l
jk)∂l + Γl

jk∇∂i
∂l + (∂ibjk)U + bjk∇∂i

U

= (∂iΓ
l
jk)∂l + Γl

jkΓ
p
il∂p + Γl

jkbilU + (∂ibjk)U − bjkbipg
pl∂l

= (∂iΓ
l
jk + Γp

jkΓ
l
ip − bjkbipg

pl)∂l + (multiple of U),

where we have used Einstein summation convention for notational ease. In-
terchanging i and j gives

∇∂j
∇∂i

∂k = (∂jΓ
l
ik + Γp

ikΓ
l
jp − bikbjpg

pl)∂l + (multiple of U).

Since ∂1, . . . , ∂n, U are linearly independent, we may equate the components
of ∂l in these last two equations. When we do this and use the local formula
for Rl

ijk from Section 3, we obtain

Rl
ijk =

∑

p

(bikbjp − bjkbip)g
pl.
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Hence if we write Rijkl = R(∂i, ∂j)∂k · ∂l, then since R(∂i, ∂j)∂k =
∑

p Rp
ijk∂p,

we get
Rijkl = bikbjl − bjkbil.

In two dimensions, it is customary to write b11 = ℓ, b12 = b21 = m, b22 = n,
and ∂1 · ∂1 = g11 = E, ∂1 · ∂2 = g12 = g21 = F, ∂2 · ∂2 = g22 = G; then the
Gaussian curvature is given by K(p) = det Sp = ℓn−m2

EG−F 2 , and

R1212 = b11b22 − b2
12 = ℓn − m2,

so that

K(∂1, ∂2) =
R1212

g11g22 − g2
12

=
ℓn − m2

EG − F 2
= K(p),

as desired. 2

8 Fourth Proof (outline)

Since curvature is an intrinsic measurement of the surface, our theorem es-
sentially proves Gauss’s Theorema Egregium, which in one form states that
the Gaussian curvature of a surface is intrinsic, i.e., it can be measured with-
out leaving the surface. In our last proof, we use a formula Gauss derived in
his original proof of the Theorema Egregium, expressing Gaussian curvature
solely in terms of E,F,G, and their derivatives.

Proof of Theorem. We use the approach of [3, pp. 193-195]. Since the
sectional curvature is R1212

EG−F 2 , it suffices to show that

4(EG − F 2)R1212 = 4(EG − F 2)2K.

Let E1 denote ∂1E, F12 denote ∂2∂1F , and so forth. We use the following
result of Gauss [3, p. 111]:

4(EG−F 2)2K =

∣

∣

∣

∣

∣

∣

∣

−2G11 + 4F12 − 2E22 E1 2F1 − E2

2F2 − G1 E F
G2 F G

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

0 E2 G1

E2 E F
G1 F G

∣

∣

∣

∣

∣

∣

∣

.

Hence we need to show that 4(EG − F 2)R1212 is equal to this difference
of determinants. To do this, we evaluate the Christoffel symbols Γk

ij using
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the Christoffel equations (where g11 = G
EG−F 2 , g

12 = g21 = − F
EG−F 2 , and

g22 = E
EG−F 2 ); we find that

Γ1
11 =

GE1 − 2FF1 + FE2

2(EG − F 2)
, Γ2

11 =
−FE1 + 2EF1 − EE2

2(EG − F 2)
,

Γ1
12 = Γ1

21 =
GE2 − FG1

2(EG − F 2)
, Γ2

12 = Γ2
21 =

−FE2 + EG1

2(EG − F 2)
,

Γ1
22 =

2GF2 − GG1 − FG2

2(EG − F 2)
, Γ2

22 =
−2FF2 + FG1 + EG2

2(EG − F 2)
.

To evaluate R1212, we use the local formulas

R1
121 = ∂1Γ

1
21 − ∂2Γ

1
11 + Γ2

21Γ
1
12 − Γ2

11Γ
1
22,

R2
121 = ∂1Γ

2
21 − ∂2Γ

2
11 + Γ1

21Γ
2
11 − Γ1

11Γ
2
21 + Γ2

21Γ
2
12 − Γ2

11Γ
2
22,

R1212 = (R1
121∂1 + R2

121∂2) · ∂2 = FR1
121 + GR2

121.

We omit this long and tedious calculation; the value which results for
4(EG − F 2)R1212 is precisely the desired difference of determinants. 2
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