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1 Introduction

In this paper, we will look at two different notions of curvature, one from
a classical standpoint and one from a modern standpoint. These two no-
tions intersect in the concept of the Gaussian curvature of a two-dimensional
surface imbedded in R3. After briefly surveying the relevant classical and
modern definitions and results, we present our main result, that the sectional
curvature of a two-dimensional manifold is nothing more than the Gaussian
curvature. We give four proofs of this result from four different standpoints.
The first relies on the classical concept of a connection form; the second uses
the classical shape operator; the third depends on local formulas for Christof-
fel symbols and curvature; the fourth applies a computational approach to a
classical formula of Gauss.

2 Classical Formulation

Classically, we define the directional or covariant derivative of a vector field
Y in Rt with respect to a vector x, to be

V.Y = (Yoa)(0),

where « is any curve in R"™ with «(0) = p and o/(0) = z,,. It is straight-
forward to check that V satisfies the following properties:
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(1) Vx(fY) = (X)Y + fVxY

(2) VixY = fVxY

(3) VxY — Vy X = [X,Y]

4) X(Y-Z)=VxY-Z+Y - -VxZ
(For instance, (4) is simply the Leibniz rule for dot products; to verify (3),
note that both sides obey the Leibniz rule and that (3) is true for X =
0, Y =0;.)

Now consider an n-dimensional surface M embedded in R**!. We define
the shape operator or Weingarten map S, : T,M — T,M as follows:

Sp(v) = _vv<U)

Note that S,(v) € T,M since 2(U - V,(U)) = V(U - U) = V,(1) = 0. Thus
S, is a linear transformation on 7,M, and we may define det S, = K(p) to
be the Gauss-Kronecker curvature of M at p. The mean curvature H(p) is
similarly defined to be % trace S,

Since U is only well defined up to a sign, the Gauss-Kronecker and mean
curvature are in general not well defined. In the special case when n is
even, however, det S, = det(—S,), so the Gauss-Kronecker curvature is well
defined; when n = 2, the most important case classically, this is known as
the Gaussian curvature.

One way to compute the Gaussian curvature is through the connection
forms and structural equations (see, e.g., [2, p.312]). Let Ey, Ey be a frame
field around a point p on a two-dimensional surface M, that is, a pair of
vector fields so that E;(q), F2(q) is an orthonormal basis for 7, M for each ¢
in a neighborhood of p. The connection forms w;; are the 1-forms defined by

wij(v) = V,E; - Ei(p).
Note that
wij(v) +wji(v) = Vol - Ej + Vo Ej - E; = o(E; - Ej) = 0,

so that w1 = wee = 0 and wis = —ws;. Let 01, 05 be the 1-forms dual to the
frame field {F1, E»}, so that 0;(v) = v - E;(p). The first structural equations
state that

df; = wia N Oy,

dfy = woy N Oy

2



one form of the second structural equation gives us a way to compute Gaussian
curvature:
dwlg = —Kgl VAN 02.

3 Modern Formulation

Recall several definitions from the modern formulation of curvature.

The Levi-Civita connection on a Riemannian manifold (M, g) is the unique
R-bilinear map D : C®(T'M) x C*(TM) — C*(T'M) such that

(1) Dx(fY) = (X)Y + fDxY

(2) DyxY = fDxY

(3) DxY — Dy X = [X,Y]

(4) Xg(Y,Z) = g(DxY, Z) + g(Y, Dx Z).
Note that we use D instead of V here to avoid confusion with the covariant
derivative of Section 2.

The curvature tensor R € T3 M is given by

R(x,y)z = Dy(Dyz) — Dy(Dyz) + Dy ) 2;
this produces a function R € T%*M defined by
R(z,y,z,w) = g(R(x,y)z,w).

The sectional curvature K (z,y) of M with respect to the plane spanned by
x,y € T,M is defined to be

R(x,y,2,y) .
9(x,2)g(y, y) — g(x,y)*

Ky(z,y) =

this is independent of the choice of basis x,y for this particular 2-plane.
Two other notions of curvature are Ricci and scalar curvature; if e; is an
orthonormal basis for 7}, M, then

Ricy(z,y) = > R(z,€;,y,€;)

Scal(p) =Y Rlei, e;,€i,€;).
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Also recall the following local definitions and formulas. If {z,...,x,} isa
local coordinate system around p € M, we write 0; = 0/0x; as the canonical
basis for 7,M. The Christoffel symbols (of the second kind) I’fj are defined
by Dy, 0; = > Ffj@k; the Christoffel formulas are

1
Ll =5 229" (Digj + 00 — Dugiy).
l

Also, if we write R(0;,0;)0, = ) R0, then

Réjk = airé’k — ;T + Z(Fé}krép - F?kré'p>‘
p
Now let M be an n-dimensional orientable surface embedded in R"+!
with unit normal vector field U, and consider the classical case in which the
scalar product g(z,y) is the usual dot product z - y, i.e., endow M with the
metric inherited from 2", We wish to compute the Levi-Civita connec-

tion on M. Let V be the covariant derivative defined previously; we define
D :C®(TM)xC>®(TM)— C>(TM) to be the tangential component of V:

D, Y =V,Y —(V, Y -U)U.

By taking tangential components of the properties of V from Section 2, it is
straightforward to check that D satisfies the conditions to be a Levi-Civita
connection. We then define the curvature tensor and the various notions of
curvature from this Levi-Civita connection.

4 Gaussian Curvature

In the special case in which M is a 2-dimensional surface, the sectional cur-
vature Kp(z,y) = K, is the same for all z,y € T,M. Also, if {E}, E»} is a
frame field (a set of orthonormal vector fields) around p, and x = x1 Ey+x9 Es,
y = 1y1E1 + y2F>, then

Ricp(%?/) = R($2E2, Ey,ys B, El) + R(xlEh Es,y1 B, Ez)
= (T191 + 22y2) Ky(E1, E»)
= g(xay>Kp<El7E2)7
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and
Scal(p) = R(E1, By, By, Ea) + R(Es, By, By, By) = 2K,(Ey, Es).

Our main result tying together the classical and modern formulations of
curvature will be that the sectional curvature on a 2-surface is simply the
Gaussian curvature.

Theorem For a 2-surface M, the sectional curvature K,(z,y) is equal to
the Gaussian curvature K (p).

In the four subsequent sections, we will present four different proofs of this
theorem; they are roughly in order from most global to most local.

Note that the theorem implies that Ric,(z,y) = g(x,y)K(p) and Scal(p) =
2K (p). Myers’s Theorem, which involves Ricci curvature, and Synge’s Theo-
rem, which involves sectional curvature, thus reduce to the following results.

Corollary 1 Let M be a complete two-dimensional manifold, and suppose
that there exists an r > 0 such that K(p) > r=2 for all p € M. Then
diam M < diam (S%(r)). In particular, M is compact with finite fundamental
group.

Note that K = 1/r% on S%(r).

Corollary 2 If M is a compact orientable two-dimensional manifold such
that K(p) > 0 for allp € M, then M has genus zero.

This last corollary is also implied by the Gauss-Bonnet Theorem.

5 First Proof

I could not find a reference for this proof.

We will use the connection forms and the structural equations from Sec-
tion 2. Let M be a two-dimensional surface in ®* and let E;, E, be a frame
field on M, with 61, 05 its dual basis of 1-forms; define the connection forms
w;j from this frame field. Note that w;;(v) = V,E; - E; = D,E; - Ej; since
U-E; =0. For the rest of this section, we will be using computations made



entirely on the surface itself; since we will thus not need covariant derivatives,
we will denote the Levi-Civita connection by V| as is customary, rather than
by D. (In the subsequent proofs, however, we will be using both covariant
derivative and Levi-Civita connection; they will be denoted, as before, by V
and D, respectively.)

We need the following lemma, which expresses Gaussian curvature ex-
plicitly in terms of the connection form wys.

Lemma 1 K(p) = Ez(wi2(E1)) — Er(wiz(Es)) — (wia(E1))? — (wi2(Er))*.
PROOF. A simple calculation shows that we can write wys as

w1z = wiz(E£1)0 + wiz(H2)0s.
Likewise, we have

d(wia(E1)) = d(wia(E1))(E1)01 + d(wia(E2))(E2)0:
= Ei(wi2(E1))01 + Ex(wia(Er))bs,

with a similar expression for D(wq2(Es)). Hence

dwis = d(wi2(Ey)) A0 + d(wi2(E2)) A Oy + wia(E1)dby + wia(Es)dby
= Ey(wia(E1))0s A Oy + By (wi2)(E2))01 A Oy 4+ wia(Er )wiz A By —
—wi2(Ha)wiz A 6y
= (=Es(wia(En)) + Eri(wiz(B2)) + (wia(Er))? + (wiz(F2))?)01 A s,

where we have used the first structural equations to evaluate df; and df-;
the lemma then follows from the second structural equation. O

PrROOF OF THEOREM. Since VElEl - B = wH(El) =0 and VE2E2 - By =
wao(Fy) = 0, Vg, Ey is a multiple of Ey while Vg, s is a multiple of Fy, so
(Vg E1) - (Vig,Ey) = 0. Similarly, (Vg,Ey) - (Vg E2) = 0; also note that

|[Ey,Ey] = Vg Ey— Vg B
= (Ve By —=Vg,Ey) - -E\)Er+ (Ve By — Vi, Ey) - Eo)Es
= (wzl(El) - wn(EQ))El + (W22(E1) - w12(E2))E2
= —wp(E)E - wlz(Ez)Ez-



Hence the sectional curvature is equal to

K,(E\,Ey) = R(Ey\,E)E, - Ey

= Vg, Ve b E— Vg Ve, E - B+ Vg g)E - B>

= (Ve,Ve,E - Ey+ (Vg Ey) - (Vg Ey)) —
—(Ve,VE,E - By + (Vg Er) - (Ve Es)) + Vi, g B - B

= (Vg By - Ey) — Ei(VE, By - By) —wia(E) Vg By - By —
—w12(E2)VE2E1 - Fy

= By(wi(B1)) — Bi(wia(F2)) — (wia(E1))? — (wia(E2))?

= Kp),

as desired. O

6 Second Proof

This proof is adapted from the method in [4, pp. 227-230].

Let M be an orientable n-dimensional manifold embedded in ®"*! with
unit normal vector field U; we will specialize later to the case n = 2. Again,
we will use V and D to represent the covariant derivative and the Levi-Civita
connection, respectively. Define R’ € T*3(M) by

R'(z,y)z = (Sp(x) - 2)Sp(y) — (Sp(y) - 2)Sp().
Recall that R € T'3(M) is defined by
R(z,y)z = Dy(Dyz) — Dy(Dyz) + Diy ) 2.

Let {04, ...,0,} be the canonical basis for T,M. We will need a lemma; note
that this lemma implies that R(z,y,2) = R'(x,y, z) for all x,y,z € TM, so
that we have, as a bonus, a formula for the curvature tensor in terms of the
classical shape operator.

Lemma 2 If z € T,M, then R'(0;,0;,z) = R(0;,0;, 2).



PROOF. Since (Vy,2) - U + (Vy,U) -2 =U -z =0, we have
Vo Va,z = Vo (Daz+ ((Va,z) - U)U)
= Dy, Dy,z+ ((Vo,(Do,2)) - U)U + V5,((Va,2) - U))U
= Dy, Dy,z+ ((Va,(Dy,2)) - U)U — ((Vo,U) - 2)Va,U
= Dy, Do,z + ((Vo,(Da;2)) - U)U — ((5,0;) - 2)Sp0;.
Now the first and third terms of this expression are in 7, M, while the second
is normal to the surface, so the tangential component of Vi, Vg, 2 is Dy, Dy, 2 —

((Sp0;) - 2)Sp0;. Similarly, the tangential component of Vi,V 2z is Dy, Dy, z —
((Sp0;) - 2)S,0;. But by definition, we have that

Yo,z = (00)(0) = 5=
where o/(0) = 0, so
0? 0?
Vo, Vg z = z= z2=Vy,Vyz;

O0x;0x; Ox;0x;
taking tangential components and rearranging, we conclude that
Dy, Dy, z — Dy, Do,z = ((5,0;) - 2)5,0; — ((Sp9;) - 2)Sp0;
= R(0;,0;)z.
Finally, since [0;, ;] = 0, we obtain
R(0;,0;)2 = D, Da,z — Do, Dy, z,

whence the lemma. O

PROOF OF THEOREM. Let M have dimension 2. Since K(z,y) is indepen-
dent of the basis x, y chosen, it suffices to show that K,(0,0;) = K(p). But
by Lemma 2,
(911922 - g%2>Kp<ala 32) = R(ab 82)81 - Oy
= R'(01,02)01 - 0y

(Sp(01) - 01)(Sp(D2) - Ba) — (Sp(D2) - O1)(Sp(h) - B2)
= (911922 — gi») det S,

(911922 — 95) K (p);

the theorem follows. O



7 Third Proof

This proof is essentially a version of the previous proof in local coordinates.
In the course of the proof, we obtain and use the so-called Gauss’s formulas.

PrROOF OF THEOREM. We loosely follow the notation of [1]. As in the
previous proof, we first assume that M is n-dimensional embedded in "+
later we will set n = 2.

Let bjr = S,(9;) - Or. We wish to express Vg, 0y, in terms of the d;’s and of
U. Now the tangential component of Vg, is given by Dy, 0, = 3, Fékal; the
normal component is V0 - U = 0;(0x - U) — Vo, U - O = S,(9;) - O = bji..
Hence

Vajak = Z Fékal + bjk;U;
1

in [1], these equations are known as Gauss’s formulas. Next, from the for-
mulas 5,(0;) - 9, = b;;, and the fact that S,(0;) € T,M, we conclude that

—Vo,U = Sp(0;) = bipg" 0.

Lp
Now, as in the previous proof, we know that
Vo, Vo, 0k = Vg, Vo, 0.
But applying Vs, to Gauss’s formulas gives
VoVo,0r = (OT%5)0 +T%Va,00 + (0ibj)U + by, Vo,U
(8-Fl )0, + F W50, + Flkble + (0ibjr)U — bjrbipg™ 0y
= (0 F]k + 1% I‘l brbipg? )0, + (multiple of U),

where we have used Einstein summation convention for notational ease. In-
terchanging ¢ and j gives

Vo,Va,0r = (0;T + L5 — bibjpg? )0y + (multiple of U).

Since 01, ...,0,,U are linearly independent, we may equate the components
of 0; in these last two equations. When we do this and use the local formula
for R}, from Section 3, we obtain

Rl =Y (birbjp — birbip)g”
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Hence if we write Ry = R(0;,0;)0 - 0y, then since R(0;,0;)0, = X, Rfjkap,
we get
Rijii = birbjr — bjrbir.
In two dimensions, it is customary to write by; = £, b1o = by = m, bes = n,
and 0y - 01 = g = E,01- 02 = g1z = go1 = F, 02 - 0y = g0 = G then the
In—m

Gaussian curvature is given by K(p) = det S, = W_FQQ, and

2 2
Ri212 = b11bge — b12 ={n—m",

so that
Ri912 . In —m?

K(0h,00) = =
(1 2) 911922—9%2 EG — F?

= K(p),

as desired. O

8 Fourth Proof (outline)

Since curvature is an intrinsic measurement of the surface, our theorem es-
sentially proves Gauss’s Theorema FEgregium, which in one form states that
the Gaussian curvature of a surface is intrinsic, i.e., it can be measured with-
out leaving the surface. In our last proof, we use a formula Gauss derived in
his original proof of the Theorema Egregium, expressing Gaussian curvature
solely in terms of F, F, G, and their derivatives.

PROOF OF THEOREM. We use the approach of [3, pp. 193-195]. Since the

sectional curvature is EIE?I?Q, it suffices to show that

4(EG - F2)R1212 - 4(EG - F2)2K.

Let Ey denote 01 E, Fi5 denote 050 F, and so forth. We use the following
result of Gauss [3, p. 111]:

—2G11 +4F 1y — 2Ey By 2F, — B, 0 By Gy
4(EG—-F?)’K = 2F, — Gy E F —| By E F
Go F G G, F G

Hence we need to show that 4(EG — F?)Ris15 is equal to this difference
of determinants. To do this, we evaluate the Christoffel symbols I" fj using
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G 12 21

the Christoffel equations (where g'' =

9% = +-2); we find that

GE, —2FF, + FE, —FE,+2EF, — FE,

Fl — 1‘\2 —
H 20EG - F?2) M 2(EG — F2) ’
GE, — FG, ~FE, + EG,

1 _pl __ 2 _ 2 _
Me=tu=oge_my =0 =5E )
r _ 2GR -GG —FGy 1, _ —2FF, + PG, + EG,

2 2(BEG-F?2) T ®E 2(EG — F2)

To evaluate Ri512, we use the local formulas
R%m = 6)11%1 - 82F}1 + Fg1r%2 - F%J‘;za

R?m - 01F§1 - 82Ff1 + F%J%l - FLF% + F%lr% - F%Fgm
Ris1z = (Ryp 01 + Riy 8s) - 0, = FRyy + GRY,.

_ _ F
EGr29 =9 = TEGF?

and

We omit this long and tedious calculation; the value which results for

4EG - F 2)R1212 is precisely the desired difference of determinants. O
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