Filtered knot contact homology and transverse knots

Lenny Ng

Duke University

Geometric Topology Seminar
 Columbia
 March 4, 2011

References:
T. Ekholm, J. Etnyre, L. Ng, and M. Sullivan, "Filtrations on the knot contact homology of transverse knots", arXiv:1010.0450.
L. Ng, "Combinatorial knot contact homology and transverse knots", arXiv:1010.0451.
T. Ekholm, J. Etnyre, L. Ng, and M. Sullivan, "Knot contact homology", in preparation.
L. Ng, "Framed knot contact homology", Duke Math. J. 141, 365-406.

Outline

(1) The conormal construction
(2) Knot contact homology
(3) Transverse homology

Cotangents and conormals

- Let M be a smooth n-manifold.
- $T^{*} M$ is naturally a symplectic $2 n$-manifold;
- $S T^{*} M$, the cosphere bundle of M, is naturally a contact ($2 n-1$)-manifold.

Cotangents and conormals

- Let M be a smooth n-manifold.
- $T^{*} M$ is naturally a symplectic $2 n$-manifold;
- $S T^{*} M$, the cosphere bundle of M, is naturally a contact ($2 n-1$)-manifold.
- Let $K \subset M$ be any embedded submanifold. Define $L_{K} \subset T^{*} M$ to be the conormal bundle to K :

$$
L_{K}=\left\{(q, p) \in T^{*} M: q \in K,\langle p, v\rangle=0 \forall v \in T_{q} K\right\} .
$$

Also define $\Lambda_{K} \subset S T^{*} M$ to be the unit conormal bundle to K :

$$
\Lambda_{K}=L_{K} \cap S T^{*} M
$$

Cotangents and conormals

- Let M be a smooth n-manifold.
- $T^{*} M$ is naturally a symplectic $2 n$-manifold;
- $S T^{*} M$, the cosphere bundle of M, is naturally a contact ($2 n-1$)-manifold.
- Let $K \subset M$ be any embedded submanifold. Define $L_{K} \subset T^{*} M$ to be the conormal bundle to K :

$$
L_{K}=\left\{(q, p) \in T^{*} M: q \in K,\langle p, v\rangle=0 \forall v \in T_{q} K\right\} .
$$

Also define $\Lambda_{K} \subset S T^{*} M$ to be the unit conormal bundle to K :

$$
\Lambda_{K}=L_{K} \cap S T^{*} M
$$

- $L_{K} \subset T^{*} M$ is a Lagrangian submanifold ($\left.\omega\right|_{L_{K}} \equiv 0$);
- $\wedge_{K} \subset S T^{*} M$ is a Legendrian submanifold (\wedge_{K} tangent to ξ).

Schematic picture

($K \subset M$ submanifold; $S T^{*} M$ cosphere bundle; L_{K} conormal bundle to K; Λ_{K} unit conormal bundle to K.)

Symplectic and topological invariants

Symplectic/contact invariants of $T^{*} M, S T^{*} M$ yield smooth invariants of M.

Question

Is $T^{*} M$ up to symplectomorphism equivalent to M up to diffeomorphism? That is, does the symplectic topology of $T^{*} M$ completely encode the smooth topology of M ?

- Symplectic homology of $T^{*} M$ and loop space cohomology: Viterbo, Abbondandolo-Schwarz, Salamon-Weber
- Cylindrical contact homology of $S T^{*} M$ and string topology: Cieliebak-Latschev
- related work of Abouzaid, Seidel, ...

Symplectic and topological invariants: the relative case

Relative case: invariants of L_{K}, Λ_{K} under Lagrangian/Legendrian isotopy yield smooth-isotopy invariants of $K \subset M$.

Question

Does the symplectic topology of the conormal bundle L_{K} completely encode the smooth topology of K ? If $\Lambda_{K_{1}}$ and $\Lambda_{K_{2}}$ are Legendrian isotopic, does that imply that K_{1} and K_{2} are smoothly isotopic?

Symplectic and topological invariants: the relative case

Relative case: invariants of L_{K}, Λ_{K} under Lagrangian/Legendrian isotopy yield smooth-isotopy invariants of $K \subset M$.

Question

Does the symplectic topology of the conormal bundle L_{K} completely encode the smooth topology of K ? If $\Lambda_{K_{1}}$ and $\Lambda_{K_{2}}$ are Legendrian isotopic, does that imply that K_{1} and K_{2} are smoothly isotopic?

Apply Legendrian contact homology (\subset Symplectic Field Theory) due to Eliashberg-Hofer (for case $V=J^{1}(Q)$, work of Ekholm-Etnyre-Sullivan).

Recap

When Legendrian contact homology is well-defined, this gives an isotopy invariant of K.

Legendrian contact homology

The LCH complex for $\Lambda_{K} \subset S T^{*} M$ is (\mathcal{A}, ∂), where \mathcal{A} is the tensor algebra freely generated by Reeb chords of Λ_{K}. The differential ∂ counts certain holomorphic disks with $\partial \subset \mathbb{R} \times \Lambda_{K}$.

The Lagrangian cylinder $\mathbb{R} \times \Lambda_{K}$ inside the symplectization $\mathbb{R} \times S T^{*} M$.

Legendrian contact homology

The LCH complex for $\Lambda_{K} \subset S T^{*} M$ is (\mathcal{A}, ∂), where \mathcal{A} is the tensor algebra freely generated by Reeb chords of Λ_{K}. The differential ∂ counts certain holomorphic disks with $\partial \subset \mathbb{R} \times \Lambda_{K}$.

Holomorphic-disk contribution of $a_{j_{1}} a_{j_{2}} a_{j_{3}}$ to $\partial\left(a_{i}\right)$, where $a_{i}, a_{j_{1}}$, $a_{j_{2}}, a_{j_{3}}$ are Reeb chords.

Knot contact homology

First reasonably nontrivial case:

- $M=\mathbb{R}^{3}, K \subset M$ knot (or link)
- $S T^{*} M=S T^{*} \mathbb{R}^{3}=J^{1}\left(S^{2}\right)$
- Think of $\Lambda_{K} \subset S T^{*} \mathbb{R}^{3}$ as the boundary of a tubular neighborhood of $K \subset \mathbb{R}^{3}$; topologically T^{2}
- Λ_{K} is unknotted as a smooth torus but generally knotted as a Legendrian torus.

Knot contact homology

First reasonably nontrivial case:

- $M=\mathbb{R}^{3}, K \subset M$ knot (or link)
- $S T^{*} M=S T^{*} \mathbb{R}^{3}=J^{1}\left(S^{2}\right)$
- Think of $\Lambda_{K} \subset S T^{*} \mathbb{R}^{3}$ as the boundary of a tubular neighborhood of $K \subset \mathbb{R}^{3}$; topologically T^{2}
- Λ_{K} is unknotted as a smooth torus but generally knotted as a Legendrian torus.

Definition

Let $K \subset \mathbb{R}^{3}$ be a knot. The Legendrian contact homology of $\Lambda_{K} \subset S T^{*} \mathbb{R}^{3}$ is the knot contact homology of K,

$$
H C_{*}(K):=H C_{*}\left(S T^{*} \mathbb{R}^{3}, \Lambda_{K}\right)
$$

This is a smooth knot invariant.

Knot contact homology, continued

Knot contact homology $H C_{*}(K)$ is the homology of a differential graded algebra (\mathcal{A}, ∂), where \mathcal{A} is the graded tensor algebra over

$$
R:=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]
$$

generated by finitely many generators in degrees $0,1,2$ (Reeb chords for Λ_{K}). The coefficient ring keeps track of the relative homology classes of boundaries of holomorphic disks.

Knot contact homology, continued

Knot contact homology $H C_{*}(K)$ is the homology of a differential graded algebra (\mathcal{A}, ∂), where \mathcal{A} is the graded tensor algebra over

$$
R:=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]
$$

generated by finitely many generators in degrees $0,1,2$ (Reeb chords for Λ_{K}). The coefficient ring keeps track of the relative homology classes of boundaries of holomorphic disks.

There is a purely algebraic/combinatorial DGA ($\left.\mathcal{A}^{\text {comb }}, \partial^{\text {comb }}\right)$ associated to a braid or knot diagram for $K ; \mathcal{A}^{\text {comb }}$ is as above, but $\partial^{\text {comb }}$ can be defined without PDEs.

Combinatorial knot contact homology

Here it is, for $B \in B_{n}$ a braid whose closure is K :
ϕ_{B} automorphism of the algebra generated by $a_{i j}, 1 \leq i, j \leq n, i \neq j$, defined by

$$
\phi_{\sigma_{k}}:\left\{\begin{array}{clll}
a_{k i} & \mapsto & -a_{k+1, i}-a_{k+1, k} a_{k i} & i \neq k, k+1 \\
a_{i k} & \mapsto & -a_{i, k+1}-a_{i k} a_{k}, k+1 & i \neq k, k+1 \\
a_{k+1, i} & \mapsto & a_{k i} & i \neq k, k+1 \\
a_{i, k+1} & \mapsto & a_{i k} & i \neq k, k+1 \\
a_{k, k+1} & \mapsto & a_{k+1, k} & \\
a_{k+1, k} & \mapsto & a_{k, k+1} & \\
a_{i j} & \mapsto & a_{i j} & i, j \neq k, k+1
\end{array}\right.
$$

$n \times n$ matrices $\Phi_{B}^{L}, \Phi_{B}^{R}$ defined by

$$
\phi_{B}\left(a_{i .}\right)=\sum_{j=1}^{n}\left(\Phi_{B}^{L}\right)_{i j} a_{j} . \quad \text { and } \quad \phi_{B}\left(a_{. j}\right)=\sum_{i=1}^{n} a_{\cdot i}\left(\Phi_{B}^{R}\right)_{i j}
$$

$n \times n$ matrix $\Lambda=\operatorname{diag}(\lambda, 1, \cdots, 1)$; generators $a_{i j}(i \neq j)$ of degree $0, b_{i j}(i \neq j), c_{i j}, d_{i j}$ of degree $1, e_{i j}, f_{i j}$ of degree 2 with $1 \leq i, j \leq n$, assembled into $n \times n$ matrices A, B, C, D, E, F, with $A_{i j}=a_{i j}$ if $i>j, \mu a_{i j}$ if $i<j$, $-1-\mu$ if $i=j ; B_{i j}=b_{i j}$ if $i>j, \mu b_{i j}$ if $i<j, 0$ if $i=j ; C_{i j}=c_{i j}, D_{i j}=d_{i j}, E_{i j}=e_{i j}, F_{i j}=f_{i j}$;

$$
\begin{aligned}
& \partial(A)=0 \\
& \partial(B)=A-\Lambda \cdot \Phi_{B}^{L} \cdot A \cdot \Phi_{B}^{R} \cdot \Lambda^{-1} \\
& \partial(C)=A-\Lambda \cdot \Phi_{B}^{L} \cdot A \\
& \partial(D)=A-A \cdot \Phi_{B}^{R} \cdot \Lambda^{-1} \\
& \partial(E)=B-C-\Lambda \cdot \Phi_{B}^{L} \cdot D \\
& \partial(F)=B-D-C \cdot \Phi_{B}^{R} \cdot \Lambda^{-1} .
\end{aligned}
$$

Invariance

Theorem (N., 2003)

The chain homotopy type of $\left(\mathcal{A}^{\text {comb }}, \partial^{\text {comb }}\right)$ is diagram-independent and yields a knot invariant, combinatorial knot contact homology

$$
H C_{*}^{c o m b}(K):=H_{*}\left(\mathcal{A}^{c o m b}, \partial^{c o m b}\right),
$$

supported in degrees $* \geq 0$.

Invariance

Theorem (N., 2003)

The chain homotopy type of $\left(\mathcal{A}^{\text {comb }}, \partial^{\text {comb }}\right)$ is diagram-independent and yields a knot invariant, combinatorial knot contact homology

$$
H C_{*}^{c o m b}(K):=H_{*}\left(\mathcal{A}^{c o m b}, \partial^{c o m b}\right),
$$

supported in degrees $* \geq 0$.

Theorem (Ekholm-Etnyre-N.-Sullivan, in progress)

$\left(\mathcal{A}^{\text {comb }}, \partial^{\text {comb }}\right)$ is homotopy equivalent (in fact, "stable tame isomorphic") to the complex (\mathcal{A}, ∂) for Legendrian contact homology; in particular,

$$
H C_{*}(K) \cong H C_{*}^{c o m b}(K)
$$

Properties of knot contact homology $H C_{*}^{\text {comb }}(K)$

Theorem (N., 2005)

- $H C_{0}^{\text {comb }}$ is a finitely generated, finitely presented noncommutative algebra over $\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]$ (=group ring of $\left.H_{1}\left(\Lambda_{K}\right)\right)$.
- Encodes Alexander polynomial (via linearized $H C_{1}^{\text {comb }}$).
- $\mathrm{HC}_{0}^{\text {comb }}$ is closely related to A-polynomial; distinguishes the unknot (Kronheimer-Mrowka, Dunfield-Garoufalidis).
- $H C_{0}^{\text {comb }}$ extends to arbitrary codimension-2 submanifolds.

Properties of knot contact homology $H C_{*}^{\text {comb }}(K)$

Theorem (N., 2005)

- $H C_{0}^{\text {comb }}$ is a finitely generated, finitely presented noncommutative algebra over $\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]$ (=group ring of $\left.H_{1}\left(\Lambda_{K}\right)\right)$.
- Encodes Alexander polynomial (via linearized $H C_{1}^{c o m b}$).
- $\mathrm{HC}_{0}^{\text {comb }}$ is closely related to A-polynomial; distinguishes the unknot (Kronheimer-Mrowka, Dunfield-Garoufalidis).
- $H C_{0}^{\text {comb }}$ extends to arbitrary codimension-2 submanifolds.

Corollary (Ekholm-Etnyre-N.-Sullivan)

$K \subset \mathbb{R}^{3}$ knot. If Λ_{K} is Legendrian isotopic to $\Lambda_{\text {unknot }}$, then K is the unknot.

Transverse knots

Definition

A knot K in a contact 3-manifold (M, ξ) is transverse if it is everywhere transverse to ξ. Two transverse knots are transversely isotopic if they are isotopic through transverse knots.

Bennequin: (closure of) braids \longleftrightarrow transverse knots/links.

Transverse knots

Definition

A knot K in a contact 3-manifold (M, ξ) is transverse if it is everywhere transverse to ξ. Two transverse knots are transversely isotopic if they are isotopic through transverse knots.

Bennequin: (closure of) braids \longleftrightarrow transverse knots/links.
For $(M, \xi)=\left(\mathbb{R}^{3}, \xi_{\text {std }}\right)$, the transverse Markov Theorem
(Orevkov-Shevchishin, Wrinkle) states that transverse knots/links are equivalent to braids modulo:

- conjugation in the braid groups
- positive stabilization $B \longleftrightarrow B \sigma_{n}$:

Transverse classification

Question

Classify transverse knots of some particular topological type.
There is one "classical" invariant of transverse knots: self-linking number.

Definition

A topological knot is transversely simple if its transverse representatives are completely determined by self-linking number; otherwise transversely nonsimple.

Transverse classification

Question

Classify transverse knots of some particular topological type.
There is one "classical" invariant of transverse knots: self-linking number.

Definition

A topological knot is transversely simple if its transverse representatives are completely determined by self-linking number; otherwise transversely nonsimple.

Transversely simple:

- unknot (Eliashberg)
- torus knots and the figure 8 knot (Etnyre-Honda)
- some twist knots (Etnyre-N.-Vértesi)
- ...

Transverse nonsimplicity

Transversely nonsimple:

- some torus knot cables (Etnyre-Honda, Etnyre-LaFountain-Tosun)
- some 3-braids (Birman-Menasco)
- a number of knots distinguished by Heegaard Floer homology.

Historically difficult problem: find effective invariants of transverse knots.

Definition

A transverse invariant is effective if it can distinguish different transverse knots with the same self-linking number and topological type (i.e., prove that some topological knot is transversely nonsimple).

Heegaard Floer homology provided the first.

Lifting a contact structure

Given a contact manifold (M, ξ), the contact structure ξ itself has a conormal lift to $S T^{*} M$:

$$
\widetilde{\xi} \cup \widetilde{-\xi}=\left\{(q, p) \in S T^{*} M:\langle p, v\rangle=0 \forall v \in \xi_{q}\right\} .
$$

Lifting a contact structure

Given a contact manifold (M, ξ), the contact structure ξ itself has a conormal lift to $S T^{*} M$:

$$
\widetilde{\xi} \cup \widetilde{-\xi}=\left\{(q, p) \in S T^{*} M:\langle p, v\rangle=0 \forall v \in \xi_{q}\right\} .
$$

If K is transverse to ξ, then the conormal lifts of K and ξ are disjoint: $\Lambda_{K} \cap \pm \xi=\emptyset$.

Filtering the LCH differential

- $\left(\mathbb{R} \times \Lambda_{K}\right) \cap(\mathbb{R} \times \widetilde{ \pm \xi})=\emptyset$
- $\operatorname{dim}(\mathbb{R} \times \widetilde{ \pm \xi})=4$
- $\mathbb{R} \times \widetilde{ \pm \xi}$ is holomorphic (given suitable choices).

Filtering the LCH differential

We can then filter the LCH differential for Λ_{K} by counting intersections with the holomorphic 4-manifolds $\mathbb{R} \times \pm \xi$:

$$
\partial^{-}\left(a_{i}\right)=U^{n_{+}(\Delta)} V^{n_{-}(\Delta)} a_{j_{1}} a_{j_{2}} a_{j_{3}}+\cdots,
$$

where $n_{ \pm}(\Delta) \geq 0$ are the number of intersections of the holomorphic disk Δ with $\mathbb{R} \times \widetilde{ \pm \xi}$.

Transverse homology

Definition

The (minus) transverse complex of a transverse knot K is the LCH algebra $\left(C T_{*}^{-}(K)=\mathcal{A}, \partial^{-}\right)$over the base ring $R[U, V]=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}, U, V\right]$, with the differential ∂^{-}filtered by intersections with $\pm \xi$. The transverse homology of K is $H T_{*}^{-}(K)=H_{*}\left(C T^{-}(K), \partial^{-}\right)$.

Transverse homology

Definition

The (minus) transverse complex of a transverse knot K is the LCH algebra $\left(C T_{*}^{-}(K)=\mathcal{A}, \partial^{-}\right)$over the base ring $R[U, V]=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}, U, V\right]$, with the differential ∂^{-}filtered by intersections with $\pm \xi$. The transverse homology of K is $H T_{*}^{-}(K)=H_{*}\left(C T^{-}(K), \partial^{-}\right)$.

Theorem

There is a combinatorial formula for $\left(C T_{*}^{-}(K), \partial^{-}\right)$in terms of a braid representative of K.

This formula is a small tweak of the combinatorial formula for the complex for knot contact homology.

Combinatorial transverse homology

Here it is, for $B \in B_{n}$ a braid whose closure is K :
As before, algebra is generated by $a_{i j}, b_{i j}, c_{i j}, d_{i j}, e_{i j}, f_{i j}$, assembled into $n \times n$ matrices A, B, C, D, E, F; auxiliary $n \times n$ matrices $\hat{A}, \breve{A}, \hat{B}, \breve{B}$ defined by

$$
\begin{aligned}
& \hat{A}_{i j}=\left\{\begin{array}{ll}
a_{i j} & i>j \\
\mu U a_{i j} & i<j \\
-1-\mu U & i=j
\end{array} \quad \check{A}_{i j}= \begin{cases}V a_{i j} & i>j \\
\mu a_{i j} & i<j \\
-V-\mu & i=j\end{cases} \right. \\
& \hat{B}_{i j}=\left\{\begin{array}{ll}
b_{i j} & i>j \\
\mu U b_{i j} & i<j \\
0 & i=j
\end{array} \quad \check{B}_{i j}= \begin{cases}V b_{i j} & i>j \\
\mu b_{i j} & i<j \\
0 & i=j ;\end{cases} \right.
\end{aligned}
$$

then the differential is given by

$$
\begin{aligned}
& \partial^{-}(A)=0 \\
& \partial^{-}(B)=A-\Lambda \cdot \Phi_{B}^{L} \cdot A \cdot \Phi_{B}^{R} \cdot \Lambda^{-1} \\
& \partial^{-}(C)=\hat{A}-\Lambda \cdot \Phi_{B}^{L} \cdot \check{A} \\
& \partial^{-}(D)=\check{A}-\hat{A} \cdot \Phi_{B}^{R} \cdot \Lambda^{-1} \\
& \partial^{-}(E)=\hat{B}-C-\Lambda \cdot \Phi_{B}^{L} \cdot D \\
& \partial^{-}(F)=\check{B}-D-C \cdot \Phi_{B}^{R} \cdot \Lambda^{-1} .
\end{aligned}
$$

Main invariance results

Theorem

Up to stable tame isomorphism over $R[U, V]$, the transverse complex $\left(C T_{*}^{-}, \partial^{-}\right)$is invariant under transverse isotopy. In particular, transverse homology $H T_{*}^{-}$is an invariant of transverse knots.

Two proofs:

- geometric (Ekholm-Etnyre-N.-Sullivan), by explicit computation of the holomorphic disks in LCH
- combinatorial (N.), via the transverse Markov Theorem.

Flavors of transverse homology

From $\left(C T^{-}(K), \partial^{-}\right)$chain complex over $R[U, V]$ (with $R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]$), obtain:

Flavors of transverse homology

From $\left(C T^{-}(K), \partial^{-}\right)$chain complex over $R[U, V]$ (with
$\left.R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]\right)$, obtain:

- $\left(\widehat{C T}_{*}(K), \widehat{\partial}\right)$ chain complex over R, by setting $(U, V)=(0,1)$ or $(1,0)$
-
-
-

Flavors of transverse homology

From ($\left.C T^{-}(K), \partial^{-}\right)$chain complex over $R[U, V]$ (with
$\left.R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]\right)$, obtain:

- $\left(\widehat{C T}_{*}(K), \widehat{\partial}\right)$ chain complex over R, by setting $(U, V)=(0,1)$ or $(1,0)$
- $\left(\widehat{\widehat{C T}}_{*}(K), \widehat{\hat{\partial}}\right)$ chain complex over R, by setting $(U, V)=(0,0)$
-
-

Flavors of transverse homology

From $\left(C T^{-}(K), \partial^{-}\right)$chain complex over $R[U, V]$ (with
$\left.R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]\right)$, obtain:

- $\left(\widehat{C T}_{*}(K), \widehat{\partial}\right)$ chain complex over R, by setting $(U, V)=(0,1)$ or $(1,0)$
- $\left.\widehat{(\widehat{C T}}_{*}(K), \widehat{\hat{\partial}}\right)$ chain complex over R, by setting $(U, V)=(0,0)$
- $\left(C T_{*}^{\infty}(K), \partial^{\infty}\right)$ chain complex over $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$, by tensoring with $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$

0

Flavors of transverse homology

From $\left(C T^{-}(K), \partial^{-}\right)$chain complex over $R[U, V]$ (with $\left.R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]\right)$, obtain:

- $\left(\widehat{C T}_{*}(K), \widehat{\partial}\right)$ chain complex over R, by setting $(U, V)=(0,1)$ or $(1,0)$
- $\left(\widehat{\widehat{C T}}_{*}(K), \widehat{\hat{\partial}}\right)$ chain complex over R, by setting $(U, V)=(0,0)$
- $\left(C T_{*}^{\infty}(K), \partial^{\infty}\right)$ chain complex over $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$, by tensoring with $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$
- $\left(C C_{*}(K), \partial\right)$ chain complex over R, by setting $(U, V)=(1,1)$

Flavors of transverse homology

From ($\left.C T^{-}(K), \partial^{-}\right)$chain complex over $R[U, V]$ (with
$\left.R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]\right)$, obtain:

- $\left(\widehat{C T}_{*}(K), \widehat{\partial}\right)$ chain complex over R, by setting $(U, V)=(0,1)$ or $(1,0) \longrightarrow$ transverse invariant
- $\left(\widehat{\widehat{C T}}_{*}(K), \widehat{\hat{\partial}}\right)$ chain complex over R, by setting $(U, V)=(0,0)$ \longrightarrow transverse invariant
- $\left(C T_{*}^{\infty}(K), \partial^{\infty}\right)$ chain complex over $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$, by tensoring with $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$
- $\left(C C_{*}(K), \partial\right)$ chain complex over R, by setting $(U, V)=(1,1)$

Flavors of transverse homology

From $\left(C T^{-}(K), \partial^{-}\right)$chain complex over $R[U, V]$ (with
$\left.R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]\right)$, obtain:

- $\left(\widehat{C T}_{*}(K), \widehat{\partial}\right)$ chain complex over R, by setting $(U, V)=(0,1)$ or $(1,0) \longrightarrow$ transverse invariant
- $\left(\widehat{\widehat{C T}}_{*}(K), \widehat{\hat{\partial}}\right)$ chain complex over R, by setting $(U, V)=(0,0)$ \longrightarrow transverse invariant
- $\left(C T_{*}^{\infty}(K), \partial^{\infty}\right)$ chain complex over $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$, by tensoring with $R\left[U^{ \pm 1}, V^{ \pm 1}\right] \longrightarrow$ topological invariant
- $\left(C C_{*}(K), \partial\right)$ chain complex over R, by setting $(U, V)=(1,1)$ \longrightarrow topological invariant; original formulation of knot contact homology

Flavors of transverse homology

From $\left(C T^{-}(K), \partial^{-}\right)$chain complex over $R[U, V]$ (with
$\left.R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]\right)$, obtain:

- $\left(\widehat{C T}_{*}(K), \widehat{\partial}\right)$ chain complex over R, by setting $(U, V)=(0,1)$ or $(1,0) \longrightarrow$ transverse invariant
- $\left(\widehat{\widehat{C T}}_{*}(K), \widehat{\hat{\partial}}\right)$ chain complex over R, by setting $(U, V)=(0,0)$ \longrightarrow transverse invariant
- $\left(C T_{*}^{\infty}(K), \partial^{\infty}\right)$ chain complex over $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$, by tensoring with $R\left[U^{ \pm 1}, V^{ \pm 1}\right] \longrightarrow$ topological invariant
- $\left(C C_{*}(K), \partial\right)$ chain complex over R, by setting $(U, V)=(1,1)$ \longrightarrow topological invariant; original formulation of knot contact homology

The homologies of these chain complexes are various flavors of transverse homology.

Effectiveness

Theorem (N., 2010)

Transverse homology (more precisely, $\widehat{H T}_{0}$) is an effective invariant of transverse knots in $\left(\mathbb{R}^{3}, \xi_{\text {std }}\right)$.

Previous transverse invariants:

- Plamenevskaya, Wu: distinguished elements of Khovanov and Khovanov-Rozansky homology; not known to be effective (and guessed not to be?)

Effectiveness

Theorem (N., 2010)

Transverse homology (more precisely, $\widehat{H T}_{0}$) is an effective invariant of transverse knots in $\left(\mathbb{R}^{3}, \xi_{\text {std }}\right)$.

Previous transverse invariants:

- Plamenevskaya, Wu: distinguished elements of Khovanov and Khovanov-Rozansky homology; not known to be effective (and guessed not to be?)
- Ozsváth-Szabó-Thurston: distinguished element of knot Floer homology via grid diagrams; known to be effective (work of Baldwin,

Chongchitmate, Khandhawit, N., Ozsváth, Thurston, Vértesi, ...)

- Lisca-Ozsváth-Stipsicz-Szabó: distinguished element of knot Floer homology via open book decompositions; known to be effective.

Example: $m\left(7_{6}\right)$ knot

$$
\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}^{-1}\left(\sigma_{3}^{3} \sigma_{2} \sigma_{3}^{-1}\right)
$$

$$
\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}^{-1}\left(\sigma_{3}^{-1} \sigma_{2} \sigma_{3}^{3}\right)
$$

These two transverse representatives of the $m\left(7_{6}\right)$ knot, which are related by a "negative flype", can be distinguished by $\widehat{H T}_{0}$: one has no ring homomorphisms to $\mathbb{Z} / 3$, the other has 5 .
They can't be distinguished by the (hat) HFK invariant, which is an element of $\widehat{H F K}_{0,0}\left(m\left(7_{6}\right)\right)=0$.

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate-N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK					
HT					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK					
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK					
$H T$					

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate-N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK					
$H T$					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK		\checkmark		\checkmark	
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK					
HT					

2007: N.-Ozsváth-Thurston, using grid diagrams

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate-N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark				
HT					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK		\checkmark		\checkmark	
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK					
HT					

2008: Ozsváth-Stipsicz, using naturality of LOSS invariant

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate-N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark				
HT					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK		\checkmark		\checkmark	
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark		\checkmark	\checkmark	
HT					

2010: Chongchitmate-N., using grid diagrams

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate-N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark	\times	\times	\times	\times
HT					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK	\times	\checkmark	\times	\checkmark	
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark	\times	\checkmark	\checkmark	
HT					

HFK invariants can't distinguish these.

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate-N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark	\times	\times	\times	\times
HT	\checkmark	\checkmark	\checkmark		\checkmark
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK	\times	\checkmark	\times	\checkmark	
HT		\checkmark	\checkmark	\checkmark	
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark	\times	\checkmark	\checkmark	
HT	\checkmark		\checkmark	\checkmark	

2010: N., using transverse homology

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate-N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark	\times	\times	\times	\times
HT	\checkmark	\checkmark	\checkmark	$\times ?$	\checkmark
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK	\times	\checkmark	\times	\checkmark	
HT	$\times ?$	\checkmark	\checkmark	\checkmark	
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark	\times	\checkmark	\checkmark	
$H T$	\checkmark	$\times ?$	\checkmark	\checkmark	

These are "transverse mirrors", as are the Birman-Menasco knots.

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate-N.): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark	\times	\times	\times	\times
HT	\checkmark	\checkmark	\checkmark	$\times ?$	\checkmark
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK	\times	\checkmark	\times	\checkmark	
HT	$\times ?$	\checkmark	\checkmark	\checkmark	
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark	\times	\checkmark	\checkmark	
$H T$	\checkmark	$\times ?$	\checkmark	\checkmark	

