
The conormal construction Knot contact homology Transverse homology

Filtered knot contact homology and transverse

knots

Lenny Ng

Duke University

Geometric Topology Seminar
Columbia

March 4, 2011

References:
T. Ekholm, J. Etnyre, L. Ng, and M. Sullivan, “Filtrations on the knot contact homology of transverse knots”,
arXiv:1010.0450.
L. Ng, “Combinatorial knot contact homology and transverse knots”, arXiv:1010.0451.
T. Ekholm, J. Etnyre, L. Ng, and M. Sullivan, “Knot contact homology”, in preparation.

L. Ng, “Framed knot contact homology”, Duke Math. J. 141, 365–406.



The conormal construction Knot contact homology Transverse homology

Outline

1 The conormal construction

2 Knot contact homology

3 Transverse homology



The conormal construction Knot contact homology Transverse homology

Cotangents and conormals

Let M be a smooth n-manifold.

T ∗M is naturally a symplectic 2n-manifold;
ST ∗M, the cosphere bundle of M , is naturally a contact
(2n− 1)-manifold.
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Cotangents and conormals

Let M be a smooth n-manifold.

T ∗M is naturally a symplectic 2n-manifold;
ST ∗M, the cosphere bundle of M , is naturally a contact
(2n− 1)-manifold.

Let K ⊂ M be any embedded submanifold. Define
LK ⊂ T ∗M to be the conormal bundle to K :

LK = {(q, p) ∈ T ∗M : q ∈ K , 〈p, v〉 = 0∀ v ∈ TqK}.

Also define ΛK ⊂ ST ∗M to be the unit conormal bundle to K :

ΛK = LK ∩ ST ∗M.
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Cotangents and conormals

Let M be a smooth n-manifold.

T ∗M is naturally a symplectic 2n-manifold;
ST ∗M, the cosphere bundle of M , is naturally a contact
(2n− 1)-manifold.

Let K ⊂ M be any embedded submanifold. Define
LK ⊂ T ∗M to be the conormal bundle to K :

LK = {(q, p) ∈ T ∗M : q ∈ K , 〈p, v〉 = 0∀ v ∈ TqK}.

Also define ΛK ⊂ ST ∗M to be the unit conormal bundle to K :

ΛK = LK ∩ ST ∗M.

LK ⊂ T ∗M is a Lagrangian submanifold (ω|LK ≡ 0);
ΛK ⊂ ST ∗M is a Legendrian submanifold (ΛK tangent to ξ) .
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Schematic picture

K

ΛK Legendrian

LK Lagrangian

M

ST ∗M contact

T
∗
M

symplectic

(K ⊂ M submanifold; ST ∗M cosphere bundle; LK conormal
bundle to K ; ΛK unit conormal bundle to K .)
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Symplectic and topological invariants

Symplectic/contact invariants of T ∗M, ST ∗M yield smooth
invariants of M.

Question

Is T ∗M up to symplectomorphism equivalent to M up to
diffeomorphism? That is, does the symplectic topology of T ∗M
completely encode the smooth topology of M?

Symplectic homology of T ∗M and loop space cohomology:
Viterbo, Abbondandolo–Schwarz, Salamon–Weber

Cylindrical contact homology of ST ∗M and string topology:
Cieliebak–Latschev

related work of Abouzaid, Seidel, . . .
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Symplectic and topological invariants: the relative case

Relative case: invariants of LK , ΛK under Lagrangian/Legendrian
isotopy yield smooth-isotopy invariants of K ⊂ M.

Question

Does the symplectic topology of the conormal bundle LK
completely encode the smooth topology of K? If ΛK1

and ΛK2
are

Legendrian isotopic, does that imply that K1 and K2 are smoothly
isotopic?
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Symplectic and topological invariants: the relative case

Relative case: invariants of LK , ΛK under Lagrangian/Legendrian
isotopy yield smooth-isotopy invariants of K ⊂ M.

Question

Does the symplectic topology of the conormal bundle LK
completely encode the smooth topology of K? If ΛK1

and ΛK2
are

Legendrian isotopic, does that imply that K1 and K2 are smoothly
isotopic?

Apply Legendrian contact homology (⊂ Symplectic Field Theory)
due to Eliashberg–Hofer (for case V = J1(Q), work of
Ekholm–Etnyre–Sullivan).
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Recap

K ⊂ M smooth

��

ΛK Legendrian ⊂ ST ∗M contact

Legendrian contact homology
��

HC∗(ST
∗M,ΛK ) =: HC∗(K ), invariant of Legendrian ΛK

When Legendrian contact homology is well-defined, this gives an
isotopy invariant of K .
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Legendrian contact homology

The LCH complex for ΛK ⊂ ST ∗M is (A, ∂), where A is the
tensor algebra freely generated by Reeb chords of ΛK . The
differential ∂ counts certain holomorphic disks with ∂ ⊂ R× ΛK .

R

R × ΛK

R × ST
∗
M

The Lagrangian cylinder R× ΛK inside the symplectization
R× ST ∗M.
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Legendrian contact homology

The LCH complex for ΛK ⊂ ST ∗M is (A, ∂), where A is the
tensor algebra freely generated by Reeb chords of ΛK . The
differential ∂ counts certain holomorphic disks with ∂ ⊂ R× ΛK .

R

R × ΛK

ai

aj1 aj2

aj3

R × ST ∗M

Holomorphic-disk contribution of aj1aj2aj3 to ∂(ai ), where ai , aj1,
aj2, aj3 are Reeb chords.
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Knot contact homology

First reasonably nontrivial case:

M = R3, K ⊂ M knot (or link)

ST ∗M = ST ∗R3 = J1(S2)

Think of ΛK ⊂ ST ∗R3 as the boundary of a tubular
neighborhood of K ⊂ R3; topologically T 2

ΛK is unknotted as a smooth torus but generally knotted as a
Legendrian torus.
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Knot contact homology

First reasonably nontrivial case:

M = R3, K ⊂ M knot (or link)

ST ∗M = ST ∗R3 = J1(S2)

Think of ΛK ⊂ ST ∗R3 as the boundary of a tubular
neighborhood of K ⊂ R3; topologically T 2

ΛK is unknotted as a smooth torus but generally knotted as a
Legendrian torus.

Definition

Let K ⊂ R3 be a knot. The Legendrian contact homology of
ΛK ⊂ ST ∗R3 is the knot contact homology of K ,

HC∗(K ) := HC∗(ST
∗R3,ΛK ).

This is a smooth knot invariant.
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Knot contact homology, continued

Knot contact homology HC∗(K ) is the homology of a differential
graded algebra (A, ∂), where A is the graded tensor algebra over

R := Z[λ±1, µ±1]

generated by finitely many generators in degrees 0, 1, 2 (Reeb
chords for ΛK ). The coefficient ring keeps track of the relative
homology classes of boundaries of holomorphic disks.
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Knot contact homology, continued

Knot contact homology HC∗(K ) is the homology of a differential
graded algebra (A, ∂), where A is the graded tensor algebra over

R := Z[λ±1, µ±1]

generated by finitely many generators in degrees 0, 1, 2 (Reeb
chords for ΛK ). The coefficient ring keeps track of the relative
homology classes of boundaries of holomorphic disks.

There is a purely algebraic/combinatorial DGA (Acomb, ∂comb)
associated to a braid or knot diagram for K ; Acomb is as above,
but ∂comb can be defined without PDEs.
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Combinatorial knot contact homology

Here it is, for B ∈ Bn a braid whose closure is K :
φB automorphism of the algebra generated by aij , 1 ≤ i, j ≤ n, i 6= j , defined by

φσk
:



































aki 7→ −ak+1,i − ak+1,k aki i 6= k, k + 1
aik 7→ −ai,k+1 − aikak,k+1 i 6= k, k + 1

ak+1,i 7→ aki i 6= k, k + 1
ai,k+1 7→ aik i 6= k, k + 1
ak,k+1 7→ ak+1,k
ak+1,k 7→ ak,k+1

aij 7→ aij i, j 6= k, k + 1;

n × n matrices ΦL
B ,ΦR

B defined by

φB (ai·) =

n
∑

j=1

(Φ
L
B )ijaj· and φB (a

·j ) =

n
∑

i=1

a
·i (Φ

R
B )ij ;

n × n matrix Λ = diag(λ, 1, · · · , 1); generators aij (i 6= j) of degree 0, bij (i 6= j), cij , dij of degree 1, eij , fij of
degree 2 with 1 ≤ i, j ≤ n, assembled into n × n matrices A, B, C ,D, E , F , with Aij = aij if i > j , µaij if i < j ,
−1 − µ if i = j ; Bij = bij if i > j , µbij if i < j , 0 if i = j ; Cij = cij , Dij = dij , Eij = eij , Fij = fij ;

∂(A) = 0

∂(B) = A − Λ · Φ
L
B · A · Φ

R
B · Λ

−1

∂(C ) = A − Λ · Φ
L
B · A

∂(D) = A − A · Φ
R
B · Λ

−1

∂(E ) = B − C − Λ · Φ
L
B · D

∂(F ) = B − D − C · Φ
R
B · Λ

−1
.
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Invariance

Theorem (N., 2003)

The chain homotopy type of (Acomb, ∂comb) is
diagram-independent and yields a knot invariant, combinatorial
knot contact homology

HC comb

∗ (K ) := H∗(A
comb, ∂comb),

supported in degrees ∗ ≥ 0.
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Invariance

Theorem (N., 2003)

The chain homotopy type of (Acomb, ∂comb) is
diagram-independent and yields a knot invariant, combinatorial
knot contact homology

HC comb

∗ (K ) := H∗(A
comb, ∂comb),

supported in degrees ∗ ≥ 0.

Theorem (Ekholm–Etnyre–N.–Sullivan, in progress)

(Acomb, ∂comb) is homotopy equivalent (in fact, “stable tame isomorphic”)

to the complex (A, ∂) for Legendrian contact homology; in
particular,

HC∗(K ) ∼= HC comb

∗ (K ).
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Properties of knot contact homology HC
comb
∗ (K )

Theorem (N., 2005)

HC comb

0 is a finitely generated, finitely presented
noncommutative algebra over Z[λ±1, µ±1] (=group ring of
H1(ΛK )).

Encodes Alexander polynomial (via linearized HC comb
1 ).

HC comb
0 is closely related to A-polynomial; distinguishes the

unknot (Kronheimer–Mrowka, Dunfield–Garoufalidis).

HC comb
0 extends to arbitrary codimension-2 submanifolds.
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Properties of knot contact homology HC
comb
∗ (K )

Theorem (N., 2005)

HC comb

0 is a finitely generated, finitely presented
noncommutative algebra over Z[λ±1, µ±1] (=group ring of
H1(ΛK )).

Encodes Alexander polynomial (via linearized HC comb
1 ).

HC comb
0 is closely related to A-polynomial; distinguishes the

unknot (Kronheimer–Mrowka, Dunfield–Garoufalidis).

HC comb
0 extends to arbitrary codimension-2 submanifolds.

Corollary (Ekholm–Etnyre–N.–Sullivan)

K ⊂ R3 knot. If ΛK is Legendrian isotopic to Λunknot, then K is
the unknot.
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Transverse knots

Definition

A knot K in a contact 3-manifold (M, ξ) is transverse if it is
everywhere transverse to ξ. Two transverse knots are transversely
isotopic if they are isotopic through transverse knots.

Bennequin: (closure of) braids ←→ transverse knots/links.
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Transverse knots

Definition

A knot K in a contact 3-manifold (M, ξ) is transverse if it is
everywhere transverse to ξ. Two transverse knots are transversely
isotopic if they are isotopic through transverse knots.

Bennequin: (closure of) braids ←→ transverse knots/links.
For (M, ξ) = (R3, ξstd), the transverse Markov Theorem
(Orevkov–Shevchishin, Wrinkle) states that transverse knots/links
are equivalent to braids modulo:

conjugation in the braid groups

positive stabilization B ←→ Bσn:

B B
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Transverse classification

Question

Classify transverse knots of some particular topological type.

There is one “classical” invariant of transverse knots: self-linking
number.

Definition

A topological knot is transversely simple if its transverse
representatives are completely determined by self-linking number;
otherwise transversely nonsimple.
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Transverse classification

Question

Classify transverse knots of some particular topological type.

There is one “classical” invariant of transverse knots: self-linking
number.

Definition

A topological knot is transversely simple if its transverse
representatives are completely determined by self-linking number;
otherwise transversely nonsimple.

Transversely simple:

unknot (Eliashberg)

torus knots and the figure 8 knot (Etnyre–Honda)

some twist knots (Etnyre–N.–Vértesi)

. . .
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Transverse nonsimplicity

Transversely nonsimple:

some torus knot cables (Etnyre–Honda,
Etnyre–LaFountain–Tosun)

some 3-braids (Birman–Menasco)

a number of knots distinguished by Heegaard Floer homology.

Historically difficult problem: find effective invariants of transverse
knots.

Definition

A transverse invariant is effective if it can distinguish different
transverse knots with the same self-linking number and topological
type (i.e., prove that some topological knot is transversely
nonsimple).

Heegaard Floer homology provided the first.
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Lifting a contact structure

Given a contact manifold (M, ξ), the contact structure ξ itself has
a conormal lift to ST ∗M:

ξ̃ ∪ −̃ξ = {(q, p) ∈ ST ∗M : 〈p, v〉 = 0∀ v ∈ ξq}.

ΛK

K
ST ∗

p M

ξp

ξ̃

−̃ξ

p
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Lifting a contact structure

Given a contact manifold (M, ξ), the contact structure ξ itself has
a conormal lift to ST ∗M:

ξ̃ ∪ −̃ξ = {(q, p) ∈ ST ∗M : 〈p, v〉 = 0∀ v ∈ ξq}.

ΛK

K
ST ∗

p M

ξp

ξ̃

−̃ξ

p

If K is transverse to ξ, then the conormal lifts of K and ξ are
disjoint: ΛK ∩ ±̃ξ = ∅.
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Filtering the LCH differential

R

R × ΛK

R × ST ∗M

R × ξ̃

(R× ΛK ) ∩ (R× ±̃ξ) = ∅

dim(R× ±̃ξ) = 4

R× ±̃ξ is holomorphic (given suitable choices).
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Filtering the LCH differential

R

R × ΛK

ai

aj1 aj2

aj3

R × ST ∗M

∆

R × ξ̃

We can then filter the LCH differential for ΛK by counting
intersections with the holomorphic 4-manifolds R× ±̃ξ:

∂−(ai) = Un+(∆)V n−(∆)aj1aj2aj3 + · · · ,

where n±(∆) ≥ 0 are the number of intersections of the

holomorphic disk ∆ with R× ±̃ξ.
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Transverse homology

Definition

The (minus) transverse complex of a transverse knot K is the LCH
algebra (CT−

∗ (K ) = A, ∂−) over the base ring
R [U,V ] = Z[λ±1, µ±1,U,V ], with the differential ∂− filtered by

intersections with ±̃ξ. The transverse homology of K is
HT−

∗ (K ) = H∗(CT
−(K ), ∂−).
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Transverse homology

Definition

The (minus) transverse complex of a transverse knot K is the LCH
algebra (CT−

∗ (K ) = A, ∂−) over the base ring
R [U,V ] = Z[λ±1, µ±1,U,V ], with the differential ∂− filtered by

intersections with ±̃ξ. The transverse homology of K is
HT−

∗ (K ) = H∗(CT
−(K ), ∂−).

Theorem

There is a combinatorial formula for (CT−
∗ (K ), ∂−) in terms of a

braid representative of K.

This formula is a small tweak of the combinatorial formula for the
complex for knot contact homology.
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Combinatorial transverse homology

Here it is, for B ∈ Bn a braid whose closure is K :
As before, algebra is generated by aij , bij , cij , dij , eij , fij , assembled into n × n matrices A,B, C ,D, E , F ; auxiliary

n × n matrices Â, Ǎ, B̂, B̌ defined by

Âij =











aij i > j

µUaij i < j

−1 − µU i = j

Ǎij =











Vaij i > j

µaij i < j

−V − µ i = j

B̂ij =











bij i > j

µUbij i < j

0 i = j

B̌ij =











Vbij i > j

µbij i < j

0 i = j ;

then the differential is given by

∂
−

(A) = 0

∂
−

(B) = A − Λ · Φ
L
B · A · Φ

R
B · Λ

−1

∂
−

(C ) = Â − Λ · Φ
L
B · Ǎ

∂
−

(D) = Ǎ − Â · Φ
R
B · Λ

−1

∂
−

(E ) = B̂ − C − Λ · Φ
L
B · D

∂
−

(F ) = B̌ − D − C · Φ
R
B · Λ

−1
.



The conormal construction Knot contact homology Transverse homology

Main invariance results

Theorem

Up to stable tame isomorphism over R [U,V ], the transverse
complex (CT−

∗ , ∂−) is invariant under transverse isotopy. In
particular, transverse homology HT−

∗ is an invariant of transverse
knots.

Two proofs:

geometric (Ekholm–Etnyre–N.–Sullivan), by explicit
computation of the holomorphic disks in LCH

combinatorial (N.), via the transverse Markov Theorem.
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Flavors of transverse homology

From (CT−(K ), ∂−) chain complex over R [U,V ] (with
R = Z[λ±1, µ±1]), obtain:
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Flavors of transverse homology

From (CT−(K ), ∂−) chain complex over R [U,V ] (with
R = Z[λ±1, µ±1]), obtain:

(ĈT ∗(K ), ∂̂) chain complex over R , by setting (U,V ) = (0, 1)
or (1, 0)
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Flavors of transverse homology

From (CT−(K ), ∂−) chain complex over R [U,V ] (with
R = Z[λ±1, µ±1]), obtain:

(ĈT ∗(K ), ∂̂) chain complex over R , by setting (U,V ) = (0, 1)
or (1, 0)

(
̂̂
CT ∗(K ),

̂̂
∂) chain complex over R , by setting (U,V ) = (0, 0)
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Flavors of transverse homology

From (CT−(K ), ∂−) chain complex over R [U,V ] (with
R = Z[λ±1, µ±1]), obtain:

(ĈT ∗(K ), ∂̂) chain complex over R , by setting (U,V ) = (0, 1)
or (1, 0)

(
̂̂
CT ∗(K ),

̂̂
∂) chain complex over R , by setting (U,V ) = (0, 0)

(CT∞
∗ (K ), ∂∞) chain complex over R [U±1,V±1], by

tensoring with R [U±1,V±1]
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Flavors of transverse homology

From (CT−(K ), ∂−) chain complex over R [U,V ] (with
R = Z[λ±1, µ±1]), obtain:

(ĈT ∗(K ), ∂̂) chain complex over R , by setting (U,V ) = (0, 1)
or (1, 0)

(
̂̂
CT ∗(K ),

̂̂
∂) chain complex over R , by setting (U,V ) = (0, 0)

(CT∞
∗ (K ), ∂∞) chain complex over R [U±1,V±1], by

tensoring with R [U±1,V±1]

(CC∗(K ), ∂) chain complex over R , by setting (U,V ) = (1, 1)
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Flavors of transverse homology

From (CT−(K ), ∂−) chain complex over R [U,V ] (with
R = Z[λ±1, µ±1]), obtain:

(ĈT ∗(K ), ∂̂) chain complex over R , by setting (U,V ) = (0, 1)
or (1, 0) −→ transverse invariant

(
̂̂
CT ∗(K ),

̂̂
∂) chain complex over R , by setting (U,V ) = (0, 0)

−→ transverse invariant

(CT∞
∗ (K ), ∂∞) chain complex over R [U±1,V±1], by

tensoring with R [U±1,V±1]

(CC∗(K ), ∂) chain complex over R , by setting (U,V ) = (1, 1)



The conormal construction Knot contact homology Transverse homology

Flavors of transverse homology

From (CT−(K ), ∂−) chain complex over R [U,V ] (with
R = Z[λ±1, µ±1]), obtain:

(ĈT ∗(K ), ∂̂) chain complex over R , by setting (U,V ) = (0, 1)
or (1, 0) −→ transverse invariant

(
̂̂
CT ∗(K ),

̂̂
∂) chain complex over R , by setting (U,V ) = (0, 0)

−→ transverse invariant

(CT∞
∗ (K ), ∂∞) chain complex over R [U±1,V±1], by

tensoring with R [U±1,V±1] −→ topological invariant

(CC∗(K ), ∂) chain complex over R , by setting (U,V ) = (1, 1)
−→ topological invariant; original formulation of knot contact
homology
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Flavors of transverse homology

From (CT−(K ), ∂−) chain complex over R [U,V ] (with
R = Z[λ±1, µ±1]), obtain:

(ĈT ∗(K ), ∂̂) chain complex over R , by setting (U,V ) = (0, 1)
or (1, 0) −→ transverse invariant

(
̂̂
CT ∗(K ),

̂̂
∂) chain complex over R , by setting (U,V ) = (0, 0)

−→ transverse invariant

(CT∞
∗ (K ), ∂∞) chain complex over R [U±1,V±1], by

tensoring with R [U±1,V±1] −→ topological invariant

(CC∗(K ), ∂) chain complex over R , by setting (U,V ) = (1, 1)
−→ topological invariant; original formulation of knot contact
homology

The homologies of these chain complexes are various flavors of
transverse homology.
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Effectiveness

Theorem (N., 2010)

Transverse homology (more precisely, ĤT 0) is an effective invariant
of transverse knots in (R3, ξstd).

Previous transverse invariants:

Plamenevskaya, Wu: distinguished elements of Khovanov and
Khovanov–Rozansky homology; not known to be effective
(and guessed not to be?)
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Effectiveness

Theorem (N., 2010)

Transverse homology (more precisely, ĤT 0) is an effective invariant
of transverse knots in (R3, ξstd).

Previous transverse invariants:

Plamenevskaya, Wu: distinguished elements of Khovanov and
Khovanov–Rozansky homology; not known to be effective
(and guessed not to be?)

Ozsváth–Szabó–Thurston: distinguished element of knot Floer
homology via grid diagrams; known to be effective (work of Baldwin,

Chongchitmate, Khandhawit, N., Ozsváth, Thurston, Vértesi, . . . )

Lisca–Ozsváth–Stipsicz–Szabó: distinguished element of knot
Floer homology via open book decompositions; known to be
effective.
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Example: m(76) knot

σ1σ
−1

2
σ1σ

−1

2
(σ3

3
σ2σ

−1

3
) σ1σ

−1

2
σ1σ

−1

2
(σ−1

3
σ2σ

3

3
)

These two transverse representatives of the m(76) knot, which are

related by a “negative flype”, can be distinguished by ĤT 0: one
has no ring homomorphisms to Z/3, the other has 5.
They can’t be distinguished by the (hat) HFK invariant, which is

an element of ĤFK 0,0(m(76)) = 0.
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Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index
≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948
HFK

HT

Knot 10128 m(10132) 10136 m(10140)

HFK

HT

Knot m(10145) 10160 m(10161) 12n591
HFK

HT
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Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index
≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948
HFK

HT

Knot 10128 m(10132) 10136 m(10140)

HFK X X

HT

Knot m(10145) 10160 m(10161) 12n591
HFK

HT

2007: N.–Ozsváth–Thurston, using grid diagrams
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Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index
≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948
HFK X

HT

Knot 10128 m(10132) 10136 m(10140)

HFK X X

HT

Knot m(10145) 10160 m(10161) 12n591
HFK

HT

2008: Ozsváth–Stipsicz, using naturality of LOSS invariant
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Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index
≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948
HFK X

HT

Knot 10128 m(10132) 10136 m(10140)

HFK X X

HT

Knot m(10145) 10160 m(10161) 12n591
HFK X X X

HT

2010: Chongchitmate–N., using grid diagrams



The conormal construction Knot contact homology Transverse homology

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index
≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948
HFK X × × × ×
HT

Knot 10128 m(10132) 10136 m(10140)

HFK × X × X

HT

Knot m(10145) 10160 m(10161) 12n591
HFK X × X X

HT

HFK invariants can’t distinguish these.



The conormal construction Knot contact homology Transverse homology

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index
≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948
HFK X × × × ×
HT X X X X

Knot 10128 m(10132) 10136 m(10140)

HFK × X × X

HT X X X

Knot m(10145) 10160 m(10161) 12n591
HFK X × X X

HT X X X

2010: N., using transverse homology



The conormal construction Knot contact homology Transverse homology

Transverse nonsimplicity computations

Legendrian knot atlas (Chongchitmate–N.): 13 knots of arc index
≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948
HFK X × × × ×

HT X X X ×? X

Knot 10128 m(10132) 10136 m(10140)

HFK × X × X

HT ×? X X X

Knot m(10145) 10160 m(10161) 12n591
HFK X × X X

HT X ×? X X

These are “transverse mirrors”, as are the Birman–Menasco knots.
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