Problem 1. Let P be the vector space of all real polynomials and $L : P \to P$ be the linear transformation defined by $L(f) = f + f'$. Prove that L is invertible.

Problem 2. Let $A \in \text{GL}_4(\mathbb{C})$, and suppose A has exactly one eigenvalue λ. Find all possible Jordan forms of A, and prove that $A - \lambda I$ is nilpotent.

Problem 3. Let k be a finite field, and let $M \in \text{GL}_n(k)$. Finally, let $I \in \text{GL}_n(k)$ be the identity matrix. Show that $M^m - I$ is not invertible for some integer $m \geq 1$.

Problem 4. Let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on a finite dimensional real vector space V. Let $S = \{v_1, \ldots, v_k\}$ be a set of vectors satisfying $\langle v_i, v_j \rangle < 0$ for all $i \neq j$. Prove that $\dim(\text{span}(S)) \geq k - 1$.

Problem 5. Let V be a finite dimensional real vector space, and let $A : V \to V$ be a linear transformation with $A^2 = A$. Show that $\text{trace}(A) = \text{rank}(A)$.

Problem 6. Let V be a finite dimensional vector space over a field k. Show that $V \cong V^*$, where V^* is the vector space of linear transformations $V \to k$.

Problem 7. Let k be a field with $\text{char}(k) \neq 2$, V a finite dimensional vector space over k, and B a symmetric bilinear form on V.

(a) Prove that if $B \neq 0$, then there exists $v \in V$ such that $B(v, v) \neq 0$.

(b) Prove that for any $v \in V$ with $B(v, v) \neq 0$, there exists a subspace $W \subseteq V$ such that $V = Fv \oplus W$ and $W \perp v$.

(c) Prove that there is a basis $\{v_i\}$ of V such that $B(v_i, v_j) = 0$ for all $i \neq j$.

Problem 8. Let V be a finite dimensional vector space and $T : V \to V$ a nonzero linear transformation. Show that if $\ker(T) = \text{im}(T)$, then $\dim(V)$ is an even integer and the minimal polynomial of T is $m(x) = x^2$.

Problem 9. Let k be a field with characteristic p, and let V be a finite dimensional k-vector space. Let $T : V \to V$ be a linear transformation with $T^p = I$.

(a) Show that T has an eigenvector in V.

(b) Show that T is upper-triangular with respect to a suitable basis of V.

Problem 10. Let V and W be finite dimensional vector spaces, and let $T : V \to W$ be a linear transformation. Prove that $\dim(\ker(T)) + \dim(\text{im}(T)) = \dim(V)$.

Problem 11. Find representatives for the (distinct) conjugacy classes of matrices with characteristic polynomial \(f(\lambda) = (\lambda^2 + 1)^2 \) in

(a) \(\text{GL}_4(\mathbb{Q}) \).

(b) \(\text{GL}_4(\mathbb{C}) \).

Problem 12. Let \(M \) be an \(n \times n \) matrix.

(a) Show that \(M \) is invertible if and only if its characteristic polynomial has a non-zero constant term.

(b) Show that if \(M \) is invertible, then its inverse \(M^{-1} \) may be expressed as a polynomial in \(M \).

Problem 13. If \(A \) is an \(n \times n \) matrix, then show that

\[
A^n = \alpha_0 I + \alpha_1 A + \ldots + \alpha_{n-1} A^{n-1}
\]

for some scalars \(\alpha_0, \ldots, \alpha_{n-1} \).

Problem 14. Let \(V \) be a finite dimensional vector space over a field \(k \). Suppose that \(A : V \to V \) is a \(k \)-linear endomorphism whose minimal polynomial is not equal to its characteristic polynomial. Show that there exist \(k \)-linear endomorphisms \(B, C : V \to V \) with \(AB = BA \) and \(AC = CA \) but \(BC \neq CB \).

Problem 15. Let \(K \) be a degree \(n \) extension of \(\mathbb{Q} \). Let \(\sigma_1, \ldots, \sigma_n : K \hookrightarrow \mathbb{C} \) be the distinct embeddings of \(K \) into \(\mathbb{C} \), and let \(\alpha \in K \). Regarding \(K \) as a vector space over \(\mathbb{Q} \), let \(\varphi : K \to K \) be the linear transformation given by \(\varphi(x) = \alpha x \). Show that the eigenvalues of \(\varphi \) are \(\sigma_1(\alpha), \ldots, \sigma_n(\alpha) \).

Problem 16. Let \(A \) be a matrix over an algebraically closed field \(k \). Show that \(A = A_s + A_n \), where \(A_s \) is a diagonalizable matrix, \(A_n \) is a nilpotent matrix, and \(A_s A_n = A_n A_s \).

Problem 17. Let \(k \) be an algebraically closed field, \(n \in \mathbb{N} \), and \(A \in \text{GL}_n(k) \).

(a) Assume \(\text{char}(k) \neq 2 \). Show that if \(A^2 \) is diagonalizable over \(k \), then \(A \) is also diagonalizable over \(k \).

(b) Given an example with \(\text{char}(k) = 2 \) where \(A^2 \) is diagonalizable and \(A \) is not diagonalizable.

Problem 18. Without using the fact that they are simultaneously triangularizable, show that two commuting square complex matrices share an eigenvector.

Problem 19. Let \(F \) be a field and \(n \in \mathbb{N} \).

(a) For \(F = \mathbb{R} \), classify up to similarity all matrices \(A \in \text{GL}_n(\mathbb{R}) \) with \(A^3 = A \).

(b) For appropriate \(F \) and \(n \), find a matrix \(A \in \text{GL}_n(F) \) that is not diagonalizable that satisfies \(A^3 = A \).

Problem 20. Let \(T \) be a linear operator on a finite dimensional vector space over a field. Prove that \(\text{rank}(T^3) + \text{rank}(T) \geq 2 \cdot \text{rank}(T^2) \).