Problem 1. Find the Galois group of the splitting field for \(f(x) = x^3 - 7 \) over \(K = \mathbb{Q}(\sqrt{-3}) \).

Problem 2. Let \(\zeta \) be a primitive 37th root of unity, and let \(\eta = \zeta + \zeta^{10} + \zeta^{26} \). Determine the Galois group of \(\mathbb{Q}(\eta) \) over \(\mathbb{Q} \).

Problem 3. Let \(f(x) = x^6 + x^3 + 1 = (x^9 - 1)/(x^3 - 1) \).
(a) Prove that \(f(x) \) is irreducible over \(\mathbb{Q} \).
(b) Find the factorization of \(f(x) \) over \(\mathbb{F}_{19} \).

Problem 4. Let \(K \) be the splitting field over \(\mathbb{Q} \) of an irreducible polynomial of degree 3. What are the possibilities for \([K : \mathbb{Q}] \)? Give an example to show that each possibility does occur.

Problem 5. Let \(f(x) \) be a polynomial of degree \(n \) that is irreducible over \(\mathbb{Q} \).
(a) If \(n \) is prime, prove that the Galois group of \(f(x) \) over \(\mathbb{Q} \) contains an \(n \) cycle.
(b) If \(n \) is not prime, show that the Galois group of \(f(x) \) over \(\mathbb{Q} \) need not contain an \(n \) cycle. (Hint: consider the cyclotomic polynomial \(\Phi_8(x) \)).

Problem 6. Give an example of two field extensions \(F/\mathbb{Q} \) and \(K/\mathbb{Q} \) with \([F : \mathbb{Q}] = [K : \mathbb{Q}] = 6 \) such that \(\text{Gal}(F/\mathbb{Q}) \) is abelian and \(\text{Gal}(K/\mathbb{Q}) \) is non-abelian.

Problem 7. Show that for any field \(F \) and any integer \(d \geq 1 \), there exists at most one finite multiplicative subgroup \(G \subseteq F^\times \) of order \(d \).

Problem 8. Let \(F = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \). List all intermediate fields \(\mathbb{Q} \subset K \subset F \), and find all elements \(\alpha \in F \) such that \(F = \mathbb{Q}(\alpha) \).

Problem 9. Let \(p \) be a prime and \(q = p^n \) for some positive integer \(n \). Show that the map \(x \mapsto x^p \) is an automorphism of \(\mathbb{F}_q \). Determine all automorphisms of \(\mathbb{F}_q \).

Problem 10. Let \(K/F \) be a Galois extension with \(\text{Gal}(K/F) \cong S_3 \). Is it true that \(K \) is the splitting field of an irreducible cubic polynomial over \(F \)?
Problem 11. Consider the polynomial \(f(x) = \frac{x^{23} - 1}{x - 1} = \sum_{i=0}^{22} x^i \). Determine the number of irreducible factors of \(f(x) \) over \(\mathbb{Q}, \mathbb{F}_2 \), and \(\mathbb{F}_{2048} \).

Problem 12. Find the Galois group of the splitting field of \(f(x) = x^3 - x + 1 \) over each of the following fields:
(a) \(\mathbb{F}_2 \)
(b) \(\mathbb{R} \)
(c) \(\mathbb{Q} \)

Problem 13. Find a factorization of \(f(x) = 6x^4 - 4x^3 + 24x^2 - 4x - 8 \) into prime elements in \(\mathbb{Z}[x] \).

Problem 14. Show that \(x^3 - 3x - 1 \) is an irreducible element of \(\mathbb{Z}[x] \). Compute the Galois group of the splitting field of \(f(x) \) over \(\mathbb{Q} \) and over \(\mathbb{R} \).

Problem 15. Compute the Galois group of \(x^4 - x^2 - 6 \) over \(\mathbb{Q} \).

Problem 16. Let \(F \subseteq E \) be an algebraic field extension. Show that \(F \subseteq E \) is primitive if and only if the set of intermediate fields \(F \subseteq L \subseteq E \) is finite.

Problem 17. Prove that \(f(x) = x^4 + 1 \) is reducible modulo every prime \(p \) but is irreducible in \(\mathbb{Q}[x] \).

Problem 18. Using the fact that there are infinitely many primes congruent to 1 modulo \(m \) for all \(m \in \mathbb{N} \), prove that every finite abelian group appears as the Galois group of some finite Galois extension of \(\mathbb{Q} \).

Problem 19. Let \(K \) be a finite extension of a field \(F \), and let \(P \) be a monic irreducible polynomial in \(K[x] \). Prove that there is a non-zero \(Q \in K[x] \) such that \(PQ \in F[x] \).

Problem 20. Is there an injective field homomorphism from \(\mathbb{F}_4 \to \mathbb{F}_{16} \)? Is there an injective field homomorphism from \(\mathbb{F}_9 \to \mathbb{F}_{27} \)? Justify your answer.