Enriching Bézout’s Theorem

Stephen McKean (Georgia Tech)
September 14th, 2019

AMS Fall Central Sectional Meeting
“It was my lot to plant the harpoon of algebraic topology into the body of the whale of algebraic geometry.”
– Lefschetz, 1924.
How many times do two curves intersect?

Theorem

Let k be an algebraically closed field. If $f, g \subset \mathbb{P}_k^2$ are generic algebraic curves of degree c, d, respectively, then

$$\sum_{p \in f \cap g} i_p(f, g) = cd.$$

What if k is not algebraically closed?
What if k is not algebraically closed?

$$k = \mathbb{R}, \quad f = y - x^3, \quad g = y^2 + x^2 - 1.$$
Algebraic topology: deg valued in \mathbb{Z}

\mathbb{A}^1-algebraic topology: deg$^{\mathbb{A}^1}$ valued in $GW(k)$

- $GW(k)$ = symmetric, non-degenerate bilinear forms over k
- $(x, y) \mapsto axy$ denoted by $\langle a \rangle$

(i) $\langle a^2 \rangle = \langle 1 \rangle$
(ii) $\langle a \rangle \langle b \rangle = \langle ab \rangle$
(iii) If $a + b \neq 0$, then $\langle a \rangle + \langle b \rangle = \langle ab(a + b) \rangle + \langle a + b \rangle$
(iv) $\langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle =: \mathbb{H}$
Can use $\text{deg}^{\mathbb{A}^1}$ to study classical enumerative problems
(Bethea-Kass-Wickelgren, Brazelton, Hoyois, Kass-Wickelgren, Larson-Vogt, Levine,
Pauli, Srinivasan-Wickelgren, Wendt, ...)

$GW(k)$ gives us richer counts than \mathbb{Z}:

\[
\begin{align*}
GW(\mathbb{C}) \xrightarrow{\text{rank}} & \mathbb{Z} \\
GW(\mathbb{R}) \xrightarrow{\text{rank} \times \text{sign}} & \mathbb{Z} \times \mathbb{Z} \\
GW(\mathbb{F}_q) \xrightarrow{\text{rank} \times \text{disc}} & \mathbb{Z} \times \mathbb{F}_q^\times / (\mathbb{F}_q^\times)^2
\end{align*}
\]

If k is not algebraically closed, we get extra information.

\mathbb{A}^1-enumerative geometry: extra information has geometric meaning.
Enriched Bézout’s Theorem

Look at sections $\sigma = (f, g)$ of $O(c) \oplus O(d)$.

Theorem (M.)

Let k be a perfect field and f, g curves of degrees c, d with $f \cap g$ isolated. If $c + d$ is odd, then

$$\sum_{p \in f \cap g} \deg_p^{A^1} (f, g) = \frac{cd}{2} \cdot \mathbb{H}.$$

$$\deg_p^{A^1} (f, g) = \begin{cases} \text{Tr}_{k(p)/k} \left(\frac{i_p}{2} \cdot \mathbb{H} \right) & \text{if } i_p \text{ even}, \\ \text{Tr}_{k(p)/k} \left(\langle a_p \rangle + \frac{i_p - 1}{2} \cdot \mathbb{H} \right) & \text{if } i_p \text{ odd.} \end{cases}$$

$\deg_p^{A^1} (f, g)$ is determined by geometric information.
Enriched Bézout’s Theorem

\(\deg_{A^1}^p (f, g) \) is determined by geometric information:

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\deg_{A^1}^p (f, g))</th>
<th>(\frac{cd}{2} \cdot H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{C})</td>
<td>(i_p(f, g))</td>
<td>(cd)</td>
</tr>
<tr>
<td>(\mathbb{R})</td>
<td>crossing sign at (p)</td>
<td>(0)</td>
</tr>
<tr>
<td>(\mathbb{F}_q)</td>
<td>crossing sign at (p)</td>
<td>((-1)^{\frac{cd}{2}})</td>
</tr>
</tbody>
</table>

- Over \(\mathbb{C} \): counts intersection points.
- Over \(\mathbb{R} \): equal number of positive/negative crossings.
- Over \(\mathbb{F}_q \): counts crossing types mod 2.
Example

\[k = \mathbb{R}, \quad f = y - x^3, \quad g = y^2 + x^2 - 1. \]
Why $c + d$ odd?

Approach uses *motivic Euler class* of $\mathcal{O}(c) \oplus \mathcal{O}(d) \to \mathbb{P}^2$.

- Only well-defined if $c + d$ odd.
- Potential fix (Larson-Vogt): pick a divisor.
- If c, d even and $\{f \cap g\}|_{\{x_0=0\}} = \emptyset$, Enriched Bézout still works.

What’s left to do?

- Explicit calculation of a_p when $i_p > 1$.
- Address c, d odd case.