ALL LINES ON A SMOOTH CUBIC SURFACE IN TERMS OF THREE SKEW LINES

STEPHEN MCKEAN, DANIEL MINAHAN, AND TIANYI ZHANG

Abstract. Harris showed that the incidence variety of a smooth cubic surface containing 27 lines has solvable Galois group over the incidence variety of a smooth cubic surface containing 3 skew lines. It follows that for any smooth cubic surface, there exist formulas for all 27 lines in terms of any 3 skew lines. In response to a question of Farb, we compute these formulas explicitly. We also discuss how these formulas relate to Segre’s count of lines on real smooth cubic surfaces.

1. Introduction

The monodromy of covering spaces provides a well-known connection between topology and Galois theory. In algebraic geometry, enumerative problems can often be rephrased in terms of covering spaces of incidence varieties. By studying the monodromy of these covers, one can speak of the Galois group of an enumerative problem. These Galois groups can provide additional insight into the enumerative problems at hand. For example, Harris shows that the Galois group of 27 lines on a smooth cubic surface is the odd orthogonal group $O_{-6}^\infty(\mathbb{Z}/2\mathbb{Z}) \leq S_{27}$ [Har79, pp. 715-718]. Since $O_{-6}^\infty(\mathbb{Z}/2\mathbb{Z})$ is not a solvable group, there is no equation in radicals for the 27 lines on a given smooth cubic surface. However, given a smooth cubic surface and a particular arrangement of lines contained therein, we obtain a new Galois group $G \leq O_{-6}^\infty(\mathbb{Z}/2\mathbb{Z})$ that may be solvable.

Let S be a smooth cubic surface over an algebraically closed field of characteristic 0. Let \mathbb{P}^{19} be the projective space parametrizing cubic surfaces in \mathbb{P}^{3}, and let $G(1,3)$ be the Grassmannian of lines in \mathbb{P}^{3}. Consider the incidence varieties

$$\Phi_{27} = \{(S, L_1, ..., L_{27}) \in \mathbb{P}^{19} \times G(1,3)^{27} : L_i \subseteq S \text{ for all } i\},$$

$$\Phi_{3,\text{skew}} = \{(S, L_1, ..., L_3) \in \mathbb{P}^{19} \times G(1,3)^{3} :$$

$$L_i \subseteq S \text{ for all } i \text{ and } L_i \cap L_j = \emptyset \text{ for all } i \neq j\}.$$

In [Har79, pp. 718-719], Harris shows that the covering $\Phi_{27} \rightarrow \Phi_{3,\text{skew}}$ has solvable Galois group. In particular, this means that there exists a formula in radicals for all 27 lines on a smooth cubic surface in terms of the cubic surface and any three skew lines that it contains. At the Roots of Topology workshop at the University of Chicago in 2018, Benson Farb asked if these formulas could be written out explicitly. The main result of this paper is to do so, namely to give explicit equations for all lines on a smooth cubic surface.
surface in terms of any three skew lines on the same surface. In Theorem 9.4, we show how these equations can be used to enumerate real lines on real smooth cubic surfaces.

The layout of the paper is as follows. In Section 2 we introduce notation and conventions for the paper. In Sections 3 through 7, we assume that we are given a smooth cubic surface S containing the skew lines $E_1 = V(x_0, x_1)$, $E_2 = V(x_2, x_3)$, and $E_3 = V(x_0 - x_2, x_1 - x_3)$ and solve for the remaining 24 lines. In Section 8, we solve the general case using a projective change of coordinates. We discuss how the formulas obtained in this paper relate to Segre’s enumeration of real lines on smooth cubic surfaces over \mathbb{R} in Section 9. In Appendix A, we include visualizations of real cubic surfaces with 27, 15, and 7 lines. We are greatly indebted to Steve Trettel for his assistance in preparing these graphics. In Appendix B, we list the equations of all 27 lines on a smooth cubic surface containing E_1, E_2, E_3.

The proofs in Sections 3 through 7 generally follow the ideas laid out in [Har79, pp. 718-719]. In Section 3, we consider the quadric surface Q defined by the skew lines E_1, E_2, E_3. These lines are contained in one ruling of Q, and the other ruling intersects S in precisely three skew lines C_4, C_5, C_6. In Section 4, we intersect S with the planes spanned by E_i and C_j. Each of these intersections consists of three lines by Bézout’s Theorem; these lines are E_i, C_j, and $L_{i,j}$. For the next step, Harris suggests solving a quadratic equation defined by Plücker relations. This proved to be difficult in the generality needed for this paper, so we use a different approach in Section 5. In particular, the four lines $E_1, E_2, L_{3,4}, L_{3,5}$ are skew, so there are exactly two lines, called C_3 and $L_{1,2}$, meeting all four of these skew lines. Following [EH16, 3.4.1], we let Q' be the quadric surface defined by $E_1, E_2, L_{3,4}$. By Bézout’s Theorem, $Q' \cap L_{3,5}$ consists of two points. Each of these points is contained in a line in the ruling that does not contain $E_1, E_2, L_{3,4}$; these two lines are C_3 and $L_{1,2}$. In Section 6, we solve for four more lines. Here, the general technique is to repeat the process of Section 4 using projective changes of coordinates as needed. While Harris suggests computing the remaining ten lines in this manner, the method becomes complicated for the lines $E_4, E_5, E_6, L_{4,5}, L_{4,6}$, and $L_{5,6}$. In Section 7, we solve for these final six lines using the same process as in Section 5.

1.1. Related work. Pannizut, Sertöz, and Sturmfels [PSS19] also give explicit equations for certain lines on smooth cubic surfaces. Let S be a smooth cubic surface whose defining polynomial $f = \sum_{i+j+k+l=3} \alpha_{i,j,k,l} x_0^i x_1^j x_2^k x_3^l$ has full support (that is, $\alpha_{i,j,k,l} \neq 0$ for all $i+j+k+l = 3$). Pick 6 skew lines contained in S and label them $E_1, ..., E_6$. Then there exists a unique blow-down $\pi : S \to \mathbb{P}^2$ that sends $E_1, ..., E_6$ to distinct points with $\pi(E_1) = [1:0:0]$, $\pi(E_2) = [0:1:0]$, $\pi(E_3) = [0:0:1]$, and $\pi(E_4) = [1:1:1]$. In [PSS19 Theorem 4.2], the authors give local charts $\{U\}$ on S and formulas for the quadratic maps $\{\pi|_U : U \to \mathbb{P}^2\}$. All lines on S can be recovered by π^{-1}, so [PSS19 Theorem 4.2] gives equations for all lines on a smooth cubic surface (whose defining polynomial has full support) in terms of 6 skew lines.

1.2. Acknowledgements. We thank Benson Farb for asking this paper’s motivating question. We also thank Matt Baker, Joe Rabinoff, Bernd Sturmfels, and Jesse Wolfson.
for helpful suggestions and support. Finally, we are especially grateful to Steve Trettel for his excellent help with the included graphics.

2. Notation and conventions

Throughout this paper, we will be working in $\mathbb{P}^3 := \mathbb{P}^3_{\mathbb{C}} = \text{Proj}(\mathbb{C}[x_0, x_1, x_2, x_3])$.

2.1. Lines on cubic surfaces. Following [Har79], we denote the 27 lines on a smooth cubic surface S by E_i, C_j for $1 \leq i, j \leq 6$ and $L_{i,j}$ for $i \neq j$ and $1 \leq i, j \leq 6$. As Harris describes [Har79, p. 717], there are 72 different sets of six disjoint lines on S:

$$\{E_i\}_{i=1}^6,$$
$$\{E_i, E_j, E_k, L_{m,n}\}_{m,n\neq i,j,k},$$
$$\{E_i, C_j, L_{j,k}\}_{k\neq i},$$
$$\{C_i, C_j, C_k, L_{m,n}\}_{m,n\neq i,j,k},$$
$$\{C_i\}_{i=1}^6.$$

2.2. Cubic surface. For the rest of the paper, let $S = \mathbb{V}(f)$ be a smooth cubic surface containing the skew lines $E_1 = \mathbb{V}(x_0, x_1), E_2 = \mathbb{V}(x_2, x_3)$, and $E_3 = \mathbb{V}(x_0 - x_2, x_1 - x_3)$, where

$$f(x_0, x_1, x_2, x_3) = \sum_{i+j+k+l=3} \alpha_{i,j,k,l}x_0^i x_1^j x_2^k x_3^l.$$

Since S contains E_1, E_2, E_3, it follows that $f(0, 0, x_2, x_3) = f(x_0, x_1, 0, 0) = f(x_0, x_1, x_0, x_1) = 0$. Evaluating $f(1, 0, 0, 0), f(0, 1, 0, 0), f(0, 0, 1, 0), f(1, 1, 0, 0), f(0, 0, 0, 1), f(1, 1, 1, 1), f(0, 1, 0, 1), f(0, 1, 0, 1), f(1, 1, 1, 1)$, and $f(1, -1, 1, -1)$ induces the following relations:

$$\alpha_{3,0,0,0} = \alpha_{0,3,0,0} = \alpha_{0,0,3,0} = \alpha_{0,0,0,3} = 0,$$
$$\alpha_{2,1,0,0} = \alpha_{1,2,0,0} = \alpha_{0,0,2,1} = \alpha_{0,0,1,2} = 0,$$
$$\alpha_{0,2,0,1} + \alpha_{0,1,0,2} = \alpha_{2,0,1,0} + \alpha_{1,0,2,0} = 0,$$
$$\alpha_{0,2,1,0} + \alpha_{0,1,2,0} + \alpha_{1,1,0,1} + \alpha_{0,1,1,1} = 0,$$
$$\alpha_{0,1,2,0} + \alpha_{0,2,0,1} + \alpha_{1,0,1,1} + \alpha_{1,1,1,0} = 0.$$

2.3. Projective change of coordinates. An invertible matrix $A \in \text{PGL}_4(\mathbb{C})$ gives a projective change of coordinates by $[a_0:a_1:a_2:a_3] \mapsto [b_0:b_1:b_2:b_3]$, where $(b_0, b_1, b_2, b_3)^T = A(a_0, a_1, a_2, a_3)^T$. By slight abuse of notation, we also denote this projective change of coordinates by $A : \mathbb{P}^3 \to \mathbb{P}^3$. Given a variety $X = \mathbb{V}(g_1, ..., g_n)$, the change of coordinates A takes X to $AX = \mathbb{V}(g_1 \circ A^{-1}, ..., g_n \circ A^{-1})$. We also note that if $\ell = \sum a_i x_i$ is a linear function and $\ell \circ A^{-1} = \sum b_i x_i$, then $(A^{-1})^T(a_0, a_1, a_2, a_3)^T = (b_0, b_1, b_2, b_3)^T$.

3. Three lines from a biruled quadric surface

The three skew lines E_1, E_2, E_3 define the quadric surface $Q = \mathbb{V}(x_0x_3 - x_1x_2)$. Moreover, Q contains the rulings $M_s = \{[s : a : 1 : a] \in \mathbb{P}^3\}$ and $N_i = \{[t : 1 : bt : b] \in \mathbb{P}^3\}$, with $M_\infty = \{[1 : a : 0 : 0]\}$ and $N_\infty = \{[1 : 0 : b : 0]\}$. Note that $M_0 = E_1$, $M_\infty = E_2$, and $M_1 = E_3$.

Proposition 3.1. Let t_4, t_5, t_6 be the roots of
\[
g(t) = (\alpha_{2,0,1}t^3 + (\alpha_{2,0,0,1} + \alpha_{1,1,1,0})t^2 + (\alpha_{0,2,1,0} + \alpha_{1,1,0,1})t + \alpha_{0,2,0,1}
\]
\[
= -((\alpha_{1,0,2,0})t^3 + (\alpha_{0,1,2,0} + \alpha_{1,0,1,1})t^2 + (\alpha_{1,0,0,2} + \alpha_{1,0,1,1})t + \alpha_{0,1,0,2}).
\]
Then $C_4 = \mathbb{V}(x_0 - t_4x_1, x_2 - t_4x_3)$, $C_5 = \mathbb{V}(x_0 - t_5x_1, x_2 - t_5x_3)$, and $C_6 = \mathbb{V}(x_0 - t_6x_1, x_2 - t_6x_3)$.

Proof. The lines C_4, C_5, C_6 are contained in both the cubic surface S and the ruling N_i. A line $\{[t : 1 : bt : b] : b \in \mathbb{C}\}$ is contained in S if and only if $f(t, 1, bt, b) = 0$ for all b. Expanding this out and simplifying via the relations given in Equation 2.1, we have
\[
f(t, 1, bt, b) = (b - b^2)g(t),
\]
which vanishes for all $b \in \mathbb{C}$ if and only if $g(t) = 0$. The roots t_4, t_5, t_6 of $g(t)$ will correspond to C_4, C_5, C_6. In particular, $N_i = \{[t_i : 1 : bt_i : b]\} = \mathbb{V}(x_0 - t_i x_1, x_2 - t_i x_3)$ is a line contained in S. Since $N_{t_4}, N_{t_5}, N_{t_6}$ lie on the same ruling of Q, we may (without loss of generality) call them C_4, C_5, C_6, respectively. We also note that $t_i \neq t_j$ for $i \neq j$, or else we would have $C_i = C_j$, contradicting the overall count of 27 lines on a smooth cubic surface. \qed

4. Nine residual lines

Next, we consider the planes $H_{i,j}$ spanned by E_i and C_j for $1 \leq i \leq 3$ and $4 \leq j \leq 6$. Intersecting each $H_{i,j}$ with S will give a new line $L_{i,j}$ contained in S. In particular, since $E_i, C_j \subset S$, Bézout’s Theorem implies that $S \cap H_{i,j}$ consists of E_i, C_j, and a third line.

Proposition 4.1. We have the equations $L_{1,i} = \mathbb{V}(x_0 - t_i x_1, \ell_{1,i})$, $L_{2,i} = \mathbb{V}(x_2 - t_i x_3, \ell_{2,i})$, and $L_{3,i} = \mathbb{V}((x_0 - x_2) - t_i(x_1 - x_3), \ell_{3,i})$, where
\[
\ell_{1,i} = (t_i^2 \alpha_{2,0,1,0} + t_i \alpha_{1,1,1,0} + \alpha_{0,2,1,0})x_1 + (t_i \alpha_{0,2,1,0} + \alpha_{0,1,2,0})x_2 + (t_i^2 \alpha_{1,0,2,0} + t_i(\alpha_{0,1,2,0} + \alpha_{1,0,1,1}) + \alpha_{0,1,1,1})x_3,
\]
\[
\ell_{2,i} = (t_i \alpha_{2,0,1,0} + \alpha_{2,0,0,1})x_0 + (t_i^2 \alpha_{2,0,1,0} + t_i(\alpha_{2,0,0,1} + \alpha_{1,1,1,0}) + \alpha_{1,1,0,1})x_1 + (t_i^2 \alpha_{1,0,2,0} + t_i \alpha_{1,0,1,1} + \alpha_{1,0,0,2})x_3,
\]
\[
\ell_{3,i} = (t_i^2 \alpha_{2,0,1,0} + t_i \alpha_{1,1,1,0} + \alpha_{0,2,1,0})x_1 + (t_i \alpha_{2,0,1,0} + \alpha_{0,2,0,2} + \alpha_{1,1,1,0})x_2 + (t_i \alpha_{2,0,0,1} - \alpha_{1,0,0,2})x_3.
\]
Proof. Note that $H_{1,i} = \mathbb{V}(x_0 - t_i x_1)$, $H_{2,i} = \mathbb{V}(x_2 - t_i x_3)$, and $H_{3,i} = \mathbb{V}((x_0 - x_2) - t_i (x_1 - x_3))$. Since $S \cap H_{i,j}$ consists of three lines, it is given by the vanishing of a product of three linear homogeneous polynomials. Two of these factors will be given by E_i and C_j, and the third will define $L_{i,j}$. The intersection $S \cap H_{1,i}$ is given by the vanishing of \(f(t_i x_1, x_1, x_2, x_3) \) by substituting $x_0 = t_i x_1$. The linear factors corresponding to E_1 and C_i are x_1 and $x_2 - t_i x_3$, respectively. By simplifying (using the relations from Equation 2.1 when necessary), one can check that $f(t_i x_1, x_1, x_2, x_3) = x_1 (x_2 - t_i x_3) \ell_{1,i}$. It follows that $L_{1,i}$ is given by the vanishing of $x_0 - t_i x_1$ and $\ell_{1,i}$. As in the previous step, the intersection $S \cap H_{2,i}$ is given by the vanishing of $f(x_0, x_1, t_i x_3, x_3) = x_3 (x_0 - t_i x_1) \ell_{2,i}$, again using the given relations to simplify when necessary. Thus $L_{2,i} = \mathbb{V}(x_2 - t_i x_3, \ell_{2,i})$. The intersection $S \cap H_{3,i}$ is given by the vanishing of $f(x_2 + t_i (x_1 - x_3), x_1, x_2, x_3) = (x_1 - x_3) (x_2 - t_i x_3) \ell_{3,i}$, again simplifying with the given relations. Thus $L_{3,i} = \mathbb{V}((x_0 - x_2) - t_i (x_1 - x_3), \ell_{3,i})$. \(\square \)

5. Two more lines from a quadric surface

To solve for the lines C_3 and $L_{1,2}$, we need to find the two lines that meet the four skew lines $E_1, E_2, L_{3,4}, L_{3,5}$. We first give a projective change of coordinates A such that $AE_1 = E_1$, $AE_2 = E_2$, and $AL_{3,4} = E_3$. We then intersect $AL_{3,5}$ with the quadric surface $Q = \mathbb{V}(x_0 x_3 - x_1 x_2)$ defined by E_1, E_2, E_3. The intersection $Q \cap AL_{3,5}$ will consist of two points, which gives two lines in the ruling $N_i = \{(t : 1 : b : b)\}$, namely AC_3 and $AL_{1,2}$. We then obtain C_3 and $L_{1,2}$ by applying the projective change of coordinates A^{-1}.

Notation 5.1. Let

\[
\begin{align*}
 c_1 &= t_2^2 \alpha_{2,0,1,0} + t_4 \alpha_{1,1,1,0} + \alpha_{0,2,1,0}, \\
 c_2 &= t_4 \alpha_{2,0,1,0} + \alpha_{0,1,2,0} + \alpha_{1,1,1,0}, \\
 c_3 &= t_4 \alpha_{0,0,0,1} - \alpha_{1,0,0,2},
\end{align*}
\]

so that $\ell_{3,4} = c_1 x_1 + c_2 x_2 + c_3 x_3$. Similarly, let

\[
\begin{align*}
 d_1 &= t_2^2 \alpha_{2,0,1,0} + t_5 \alpha_{1,1,1,0} + \alpha_{0,2,1,0}, \\
 d_2 &= t_5 \alpha_{2,0,1,0} + \alpha_{0,1,2,0} + \alpha_{1,1,1,0}, \\
 d_3 &= t_5 \alpha_{0,0,0,1} - \alpha_{1,0,0,2},
\end{align*}
\]

so that $\ell_{3,5} = d_1 x_1 + d_2 x_2 + d_3 x_3$.

Proposition 5.2. We have that $d_1 \neq 0$.

Proof. Suppose $d_1 = 0$. Then $L_{3,5} = \mathbb{V}((x_0 - x_2) - t_5 (x_1 - x_3), d_2 x_2 + d_3 x_3)$ contains the point $[t_5 : 1 : 0 : 0]$, which is also contained in $E_2 = \mathbb{V}(x_2, x_3)$. However, these lines are necessarily skew, so we obtain a contradiction. Thus $d_1 \neq 0$. \(\square \)

Consider the projective change of coordinates given by

\[
A^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -t_4 & c_1 & 0 & 0 \\ 0 & 0 & 1 & -c_2 \\ 0 & 0 & -t_4 & -c_3 \end{pmatrix}.
\]
Recall that $A^{-1}E_1 = E_1$, $A^{-1}E_2 = E_2$, and $A^{-1}E_3 = L_{3,4}$. Any projective change of coordinates in \mathbb{P}^3 is determined by its image on three skew lines. Moreover, since A^{-1} takes the skew lines E_1, E_2, E_3 to the skew lines $E_1, E_2, L_{3,4}$, it follows that A^{-1} is non-singular, with $-c_1(c_3 + t_4c_2) \neq 0$. The inverse matrix

$$
(A^{-1})^T = \begin{pmatrix}
1 & 0 & 0 & 0 \\
\frac{t_4}{c_1} & \frac{1}{c_1} & 0 & 0 \\
0 & 0 & \frac{c_3 + c_2 t_4}{c_3 + c_2 t_4} & -\frac{c_2}{c_3 + c_2 t_4} \\
0 & 0 & -\frac{c_3 + c_2 t_4}{c_3 + c_2 t_4} & \frac{1}{c_3 + c_2 t_4}
\end{pmatrix}
$$

gives $AE_1 = E_1$, $AE_2 = E_2$, and $AL_{3,4} = E_3$.

Notation 5.3. Let

$$u_1 = \frac{t_4 - t_5}{c_1},$$
$$u_2 = -\frac{c_3 + c_2 t_5}{c_3 + c_2 t_4},$$
$$u_3 = \frac{t_4 - t_5}{c_3 + c_2 t_4},$$
$$v_2 = \frac{1}{d_1} \cdot \frac{d_2 c_3 - d_3 c_2}{c_3 + c_2 t_4},$$
$$v_3 = -\frac{1}{d_1} \cdot \frac{d_2 t_4 + d_3}{c_3 + c_2 t_4},$$

so that $AL_{3,5} = \mathbb{V}(x_0 + u_1 x_1 + u_2 x_2 + u_3 x_3, x_1 + v_2 x_2 + v_3 x_3)$.

Recall that E_1, E_2, E_3 are contained in the ruling $M_s = \{[s : as : 1 : a]\}$ of $Q = \mathbb{V}(x_0 x_3 - x_1 x_2)$. We will intersect $AL_{3,5}$ with Q to obtain two lines in the ruling $N_t = \{[t : 1 : bt : b]\}$. Substituting $x_0 = -u_1 x_1 - u_2 x_2 - u_3 x_3$ and $x_1 = -v_2 x_2 - v_3 x_3$ in the defining equation for Q, we find that

$$Q \cap AL_{3,5} = \mathbb{V}(v_2 x_2^2 + (u_1 v_2 - u_2 + v_3) x_2 x_3 + (u_1 v_3 - u_3) x_3^2).$$

The points of $Q \cap AL_{3,5}$ are determined by the ratio $\frac{x_2}{x_3}$, so it suffices to solve the quadratic equation

$$v_2 \left(\frac{x_2}{x_3}\right)^2 + (u_1 v_2 - u_2 + v_3) \frac{x_2}{x_3} + (u_1 v_3 - u_3) = 0. \tag{5.1}$$

By Bézout’s Theorem, $Q \cap AL_{3,5}$ consists of two points, so there must be two distinct solutions to Equation \[5.1\]. In particular, $v_2 \neq 0$ and $(u_1 v_2 - u_2 + v_3)^2 \neq 4v_2(u_1 v_3 - u_3)$.

Notation 5.4. Let

$$s_1 = \frac{-(u_1 v_2 - u_2 + v_3) + \sqrt{(u_1 v_2 - u_2 + v_3)^2 - 4v_2(u_1 v_3 - u_3)}}{2v_2}$$

and

$$s_2 = \frac{-(u_1 v_2 - u_2 + v_3) - \sqrt{(u_1 v_2 - u_2 + v_3)^2 - 4v_2(u_1 v_3 - u_3)}}{2v_2}.$$
be the solutions of \(v_2\left(\frac{x_2}{x_3}\right)^2 + (u_1v_2 - u_2 + v_3)\frac{x_2}{x_3} + (u_1v_3 - u_3) = 0\). If \((u_1v_2 - u_2 + v_3)^2 - 4v_2(u_1v_3 - u_3) = re^{i\theta}\) with \(r \geq 0\) and \(0 \leq \theta < 2\pi\) is a complex number, then we denote
\[
\sqrt{re^{i\theta}} = \sqrt{r}e^{i\theta/2} \quad \text{and} \quad -\sqrt{re^{i\theta}} = -\sqrt{r}e^{i\theta/2}.
\]

Proposition 5.5. We have the equations
\[
C_3 = \mathbb{V}(x_0 + (-s_1c_1 - t_4)x_1, (1 + s_1c_2)x_2 + (s_1c_3 - t_4)x_3) \quad \text{and} \quad L_{1,2} = \mathbb{V}(x_0 + (-s_1c_1 - t_4)x_1, (1 + s_2c_2)x_2 + (s_2c_3 - t_4)x_3).
\]

Proof. Note that a line \(\{[t : 1 : bt : b] : b \in \mathbb{C}\}\) of the ruling \(N_t\) is determined by the ratio \(\frac{x_2}{x_3} = \frac{bt}{b} = t\). That is, the line \(N_{s_i} = \mathbb{V}(x_0 - s_i x_1, x_2 - s_i x_3)\) contains the point of \(Q \cap AL_{3,5}\) corresponding to \(\frac{x_2}{x_3} = s_i\). Without loss of generality, we may denote \(AC_3 = \mathbb{V}(x_0 - s_1 x_1, x_2 - s_1 x_3)\) and \(AL_{1,2} = \mathbb{V}(x_0 - s_2 x_1, x_2 - s_2 x_3)\). The proof is then completed by applying \(A^{-1}AC_3 = C_3\) and \(A^{-1}AL_{1,2} = L_{1,2}\). \(\square\)

6. **Four lines as residual lines**

Given our original three skew lines, along with the other fourteen lines that we have found, the remaining ten lines are residually determined. That is, given two lines \(\Lambda_1, \Lambda_2\) in \(S\), the intersection of \(S\) with the plane \(H\) containing \(\Lambda_1\) and \(\Lambda_2\) is a third line contained in \(S\). The intersection \(S \cap H\) is given by the vanishing of the product of three linear homogeneous polynomials; two of these factors correspond to \(\Lambda_1\) and \(\Lambda_2\), and the third factor corresponds to the desired line. We will frequently use projective changes of coordinates to simplify these computations. However, we only use this approach to find four of the remaining ten lines. Finding the lines \(E_4, E_5, E_6, L_{4,3}, L_{4,6},\) and \(L_{5,6}\) proved to be difficult, so we give a different approach in Section 7. We will use the fact [Har79, p. 719] that \(E_j\) is residual to \(C_3\) and \(L_{3,j}\), \(C_i\) is residual to \(L_{1,2}\) and \(E_i\), and \(L_{j,k}\) is residual to \(E_j\) and \(C_k\).

6.1. **\(C_2\) and \(L_{1,3}\)**. The plane containing \(E_1\) and \(L = \mathbb{V}(x_0 + ax_1, bx_2 + cx_3)\) is \(H = \mathbb{V}(x_0 + ax_1)\). To obtain the third line, say \(\Lambda\), contained in \(S \cap H\), we factor \(f(-ax_1, x_2, x_3) = x_1(bx_2 + cx_3)(mx_1 + nx_2 + px_3)\). Simplifying, we find the following equations:

\[
\begin{align*}
bm &= a^2\alpha_{2,0,1,0} - a\alpha_{1,1,1,0} + \alpha_{0,2,1,0}, \\
cm &= a^2\alpha_{2,0,0,1} - a\alpha_{1,0,1,1} + \alpha_{0,2,0,1}, \\
bm &= -a\alpha_{1,0,2,0} + \alpha_{0,1,2,0}, \\
cp &= -a\alpha_{1,0,0,2} + \alpha_{0,1,0,2}, \\
bp + cn &= -a\alpha_{1,0,1,1} + \alpha_{0,1,1,1}.
\end{align*}
\]

Since \(L\) is a line, we note that \((b, c) \neq (0, 0)\), so \(|b|^2 + |c|^2 > 0\). Thus

\begin{equation}
(6.1) \quad m = \frac{b(a^2\alpha_{2,0,1,0} - a\alpha_{1,1,1,0} + \alpha_{0,2,1,0}) + c(a^2\alpha_{2,0,0,1} - a\alpha_{1,0,1,1} + \alpha_{0,2,0,1})}{|b|^2 + |c|^2}.
\end{equation}

Next, since \(|b|^4 + |c|^2 > 0\) and \(|b|^2 + |c|^4 > 0\), we use the expressions

\[
\begin{align*}
c^2n &= c(bp + cn) - b(cp) \\
&= c(-a\alpha_{1,0,1,1} + \alpha_{0,1,1,1}) - b(-a\alpha_{1,0,0,2} + \alpha_{0,1,0,2})
\end{align*}
\]
and
\[b^2 p = b(bp + cn) - c(bn) \]
\[= b(-a\alpha_{1,0,1,1} + \alpha_{0,1,1,1}) - c(-a\alpha_{1,0,2,0} + \alpha_{0,1,2,0}) \]
to solve for \(n \) and \(p \). This yields
\[n = \frac{c^2(-a\alpha_{1,0,1,1} + \alpha_{0,1,1,1}) - b(-a\alpha_{1,0,2,0} + \alpha_{0,1,2,0})}{|b|^2 + |c|^4} \]
and
\[p = \frac{b^2(-a\alpha_{1,0,1,1} + \alpha_{0,1,1,1}) - c(-a\alpha_{1,0,2,0} + \alpha_{0,1,2,0})}{|b|^4 + |c|^2} \].

Remark 6.1. It follows that the residual line \(\Lambda \) in the plane \(H \) is given by \(\mathbb{V}(x_0 + ax_1, mx_1 + nx_2 + px_3) \), where \(m,n,p \) are as above.

Notation 6.2. Thinking of \(m,n,p \) (Equations 6.1, 6.2, and 6.3) as functions of \(a,b,c \), let \((m_1,n_1,p_1) = (m,n,p)(-s_1c_1 - t_4, 1 + s_1c_2, s_1c_3 - t_4) \). Likewise, let \((m_2,n_2,p_2) = (m,n,p)(-s_2c_1 - t_4, 1 + s_2c_2, s_2c_3 - t_4) \).

Proposition 6.3. We have the equations \(L_{1,3} = \mathbb{V}(x_0 + (-s_1c_1 - t_4)x_1, m_1x_1 + n_1x_2 + p_1x_3) \) and \(C_2 = \mathbb{V}(x_0 + (-s_2c_1 - t_4)x_1, m_2x_1 + n_2x_2 + p_2x_3) \).

Proof. If \((a,b,c) = (-s_1c_1 - t_4, 1 + s_1c_2, s_1c_3 - t_4) \), then \(\mathbb{V}(x_0 + ax_1, bx_2 + cx_3) = C_3 \) and hence the residual line \(\Lambda = L_{1,3} \). If \((a,b,c) = (-s_2c_1 - t_4, 1 + s_2c_2, s_2c_3 - t_4) \), then \(\mathbb{V}(x_0 + ax_1, bx_2 + cx_3) = L_{1,2} \) and hence the residual line \(\Lambda = C_2 \). Remark 6.1 then gives us the desired equations. \(\square \)

6.2. \(C_1 \) and \(L_{2,3} \). We will give a projective change of coordinates \(B \) that fixes \(E_2 \) and takes \(L = \mathbb{V}(x_0 + ax_1, bx_2 + cx_3) \) to \(BL = \mathbb{V}(x_0 + ax_1, x_2) \). Intersecting the cubic surface \(BS = \mathbb{V}(f \circ B^{-1}) \) with the plane \(H \) containing \(E_2 \) and \(BL \), we will be able to solve for the third line \(\Lambda \) contained in \(BS \cap H \). We then obtain the desired line, namely \(C_1 \) or \(L_{2,3} \), as the line \(B^{-1}\Lambda \). Let

\[(B^{-1})^T = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & b & |b|^2 + |c|^2 & 0 \\
0 & |b|^2 + |c|^2 & 0 & c \\
0 & c & 0 & -b
\end{pmatrix}. \]

Note that \(L \) is a line, so \((b,c) \neq (0,0) \). Since \((b,c) \neq (0,0) \), it follows that \(B \) is well-defined and moreover \(\det B = -1 \). We have that \(BE_2 = E_2 \) and \(BL = \mathbb{V}(x_0 + ax_1, x_2 + (bc - bc)x_3) = \mathbb{V}(x_0 + ax_1, x_2) \). The plane \(H = \mathbb{V}(x_2) \) contains both \(E_2 \) and \(BL \). The intersection \(BS \cap H \) is given by the vanishing of

\[f \circ B^{-1}|_{x_2=0} = f(x_0, x_1, cx_3, -bx_3) = x_3(x_0 + ax_1)(hx_0 + jx_1 + kx_3). \]
Evaluating $f \circ B^{-1}|_{x_2=0}$, we obtain the following relations:

(6.4) \[h = \alpha_{2,0,1,0}c - \alpha_{2,0,0,1}b, \]
\[j + ah = \alpha_{1,1,1,0}c - \alpha_{1,1,0,1}b, \]
\[k = \alpha_{1,0,2,0}c^2 - \alpha_{1,0,1,1}bc + \alpha_{1,0,0,2}b^2. \]

Subtracting ah from $j + ah$, we have

(6.6) \[j = \alpha_{1,1,1,0}c - \alpha_{1,1,0,1}b - a(\alpha_{2,0,1,0}c - \alpha_{2,0,0,1}b). \]

Remark 6.4. It follows that $BS \cap H$ contains the lines E_2, BL, and $\Lambda = V(hx_0 + jx_1 + kx_3, x_2)$. Applying B^{-1}, we have

\[B^{-1}\Lambda = V(hx_0 + jx_1 + \frac{zk}{|b|^2 + |c|^2}x_2 - \frac{bk}{|b|^2 + |c|^2}x_3, bx_2 + cx_3). \]

Notation 6.5. Thinking of h, j, k (Equations 6.4, 6.6, and 6.5) as functions of a, b, c, let $(h_1, j_1, k_1) = (h, j, k)(s_1c_1 - t_4, 1, s_1c_2, s_1c_3 - t_4)$. Likewise, let $(h_2, j_2, k_2) = (h, j, k)(s_2c_1 - t_4, 1, s_2c_2, s_2c_3 - t_4)$.

Proposition 6.6. We have the equations

\[L_{2,3} = V(h_1x_0 + j_1x_1 + \frac{(s_1c_3 - t_4)k_1}{|1 + s_1c_2|^2 + |s_1c_3 - t_4|^2}x_2 - \frac{(1 + s_1c_2)k_1}{|1 + s_1c_2|^2 + |s_1c_3 - t_4|^2}x_3, \]
\[(1 + s_1c_2)x_2 + (s_1c_3 - t_4)x_3) \]

and

\[C_1 = V(h_2x_0 + j_2x_1 + \frac{(s_2c_3 - t_4)k_2}{|1 + s_2c_2|^2 + |s_2c_3 - t_4|^2}x_2 - \frac{(1 + s_2c_2)k_2}{|1 + s_2c_2|^2 + |s_2c_3 - t_4|^2}x_3, \]
\[(1 + s_2c_2)x_2 + (s_2c_3 - t_4)x_3). \]

Proof. If $(a, b, c) = (s_1c_1 - t_4, 1, s_1c_2, s_1c_3 - t_4)$, then $V(x_0 + ax_1, bx_2 + cx_3) = C_3$ and hence the residual line is $\Lambda = BL_{2,3}$. If $(a, b, c) = (s_2c_1 - t_4, 1, s_2c_2, s_2c_3 - t_4)$, then $V(x_0 + ax_1, bx_2 + cx_3) = L_{1,2}$ and hence the residual line is $\Lambda = BC_1$. Remark 6.4 then gives us the desired equations.

7. The final six lines

We now want to solve for $E_4, E_5, E_6, L_{4,5}, L_{4,6}$, and $L_{5,6}$. For i, j, k pairwise distinct elements of $\{4, 5, 6\}$, we note that $L_{i,j}$ and E_k are the two lines passing through the four skew lines $C_i, C_j, L_{1,k}$, and $L_{2,k}$. We will use the same methods as in Section 5 to solve for these lines. We first give two projective changes of coordinates. Let

\[(A^{-1})^T = \begin{pmatrix} t_j & 1 & 0 & 0 \\ t_i & 1 & 0 & 0 \\ 0 & 0 & t_j & 1 \\ 0 & 0 & t_i & 1 \end{pmatrix} \]
\[\text{and} \quad (B^{-1})^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{t_j}{t_i} - \frac{t_k}{t_i} & 0 & \frac{\gamma(t_j - t_k)}{t_i - t_k} \\ 0 & 0 & \frac{1}{\delta} & 0 \\ 0 & 0 & 0 & -\frac{1}{\epsilon} \end{pmatrix}, \]
where

\[
\gamma = (1 - \frac{t_i - t_k}{t_j - t_k}) (t_k^2 \alpha_{2,0,1,0} + t_k \alpha_{1,1,1,0} + \alpha_{0,2,1,0}),
\]
\[
\delta = \frac{t_k^2 \alpha_{1,0,2,0} + t_k (t_j \alpha_{1,0,2,0} + \alpha_{0,1,2,0} + \alpha_{1,0,1,1}) + (t_j \alpha_{0,1,2,0} + \alpha_{0,1,1,1})}{(t_k^2 \alpha_{1,0,2,0} + t_k (t_i \alpha_{1,0,2,0} + \alpha_{0,1,2,0} + \alpha_{1,0,1,1}) + (t_i \alpha_{0,1,2,0} + \alpha_{0,1,1,1})},
\]
\[
\varepsilon = \frac{t_k^2 \alpha_{1,0,2,0} + t_k (t_i \alpha_{1,0,2,0} + \alpha_{0,1,2,0} + \alpha_{1,0,1,1}) + (t_i \alpha_{0,1,2,0} + \alpha_{0,1,1,1})}{t_k^2 \alpha_{1,0,2,0} + t_k (t_j \alpha_{1,0,2,0} + \alpha_{0,1,2,0} + \alpha_{1,0,1,1}) + (t_j \alpha_{0,1,2,0} + \alpha_{0,1,1,1})}.
\]

Since \(t_i \neq t_j\) (as noted in the proof of Proposition 3.1), we have that \(A\) is non-singular. As a result, the fact that \(C_i, C_j,\) and \(L_{1,k}\) are skew implies that \(AC_i, AC_j,\) and \(AL_{1,k}\) are skew. Moreover, we have that \(AC_i = \mathbb{V}(x_0, x_2)\) and \(AC_j = \mathbb{V}(x_1, x_3)\). We also have

\[
AL_{1,k} = \mathbb{V}((t_j - t_k)x_0 + (t_i - t_k)x_1, (t_k^2 \alpha_{2,0,1,0} + t_k \alpha_{1,1,1,0} + \alpha_{0,2,1,0} + \alpha_{0,2,1,0})(x_0 + x_1) + \delta x_2 + \varepsilon x_3)
\]
\[
= \mathbb{V}(x_0 + \frac{t_i - t_k}{t_j - t_k} x_1, \gamma x_1 + \delta x_2 + \varepsilon x_3).
\]

As mentioned in the proof of Proposition 3.1, we have that \(t_i \neq t_j \neq t_k, \) so \(\frac{t_i - t_k}{t_j - t_k}\) is a complex number not equal to 0 or 1. Also note that if \(\delta = 0,\) then \(AC_j\) and \(AL_{1,k}\) intersect at \(0:0:1:0\), contradicting the fact that they are skew. Similarly, if \(\varepsilon = 0\), then \(AC_i\) and \(AL_{1,k}\) intersect at \(0:0:0:1\), again contradicting our skew assumption. We thus have that \(\delta \neq 0\) and \(\varepsilon \neq 0\), so the change of coordinates given by \(B\) is well-defined and non-singular.

Now we have \(BAC_i = \mathbb{V}(x_0, x_2), BAC_j = \mathbb{V}(x_1, x_3),\) and \(BAL_{1,k} = \mathbb{V}(x_0 - x_1, x_2 - x_3)\).

These three skew lines lie on the ruling \(N_i = \{[t : 1 : b : t]\}\) of the quadric surface \(Q = \mathbb{V}(x_0 x_3 - x_1 x_2).\) In particular, we have \(N_0 = BAC_i, N_\infty = BAC_j,\) and \(N_1 = BAL_{1,k}\).

Next, we will intersect \(BAL_{2,k}\) with \(Q\). By Bézout’s Theorem, this intersection will consist of two points. The lines in the ruling \(M_s = \{[s : a : 1 : a]\}\) passing through these two points will be \(BAL_{i,j}\) and \(BAE_{s,k}\). We have that

\[
BAL_{2,k} = B\mathbb{V}((t_j - t_k)x_2 + (t_i - t_k)x_3, \pi x_0 + \rho x_1 + \sigma x_2 + \tau x_3)
\]
\[
= \mathbb{V}(\frac{\gamma(t_j - t_k)}{\varepsilon} x_1 + \frac{t_j - t_k}{t_j - t_k} x_2 - \frac{t_i - t_k}{t_i - t_k} x_3, \pi x_0 + (\frac{-\rho(t_j - t_k)}{t_i - t_k} + \frac{\pi(t_j - t_k)}{t_i - t_k}) x_1 + \frac{\rho}{t_i - t_k} x_2 - \frac{\tau}{t_i - t_k} x_3)
\]
\[
= \mathbb{V}(\frac{\rho(t_i - t_k)}{t_j - t_k} x_1 + \frac{\rho(t_i - t_k)}{t_j - t_k} x_2 - \frac{t_i - t_k}{t_j - t_k} x_3, \pi x_0 + (\frac{\pi(t_i - t_k)}{t_j - t_k} - \rho(t_i - t_k)) x_1 + \frac{\pi}{t_j - t_k} x_2 - \frac{\tau}{t_j - t_k} x_3).
\]

where

\[
\pi = t_k^2 \alpha_{2,0,1,0} + t_k (t_i \alpha_{2,0,1,0} + \alpha_{0,2,0,1} + \alpha_{1,1,1,0}) + (t_j \alpha_{2,0,0,1} + \alpha_{1,1,0,1}),
\]
\[
\rho = t_k^2 \alpha_{2,0,1,0} + t_k (t_i \alpha_{2,0,1,0} + \alpha_{0,2,0,1} + \alpha_{1,1,1,0}) + (t_i \alpha_{2,0,0,1} + \alpha_{1,1,0,1}),
\]
\[
\sigma = t_k^2 \alpha_{1,0,2,0} + t_k \alpha_{1,0,1,1} + \alpha_{1,0,0,2}.
\]

Proposition 7.1. We have that \(\pi \neq 0\).

Proof. If \(\pi = 0\), then \(AL_{2,k} = \mathbb{V}((t_j - t_k)x_2 + (t_i - t_k)x_3, \rho x_1 + \sigma x_2 + \tau x_3).\) Note that \(AC_j = \mathbb{V}((t_i - t_j)x_1, (t_i - t_j)x_3) = \mathbb{V}(x_1, x_3).\) Thus the point \([1:0:0:0]\) is contained in both \(AL_{2,k}\) and \(AC_j\), so these lines are not skew. However, this contradicts the fact that \(L_{2,k}\) and \(C_j\) are skew, so we conclude that \(\pi \neq 0\). \(\square\)

We compute the intersection \(Q \cap BAL_{2,k}\) by substituting \(x_2 = \frac{-\rho}{t_j - t_k} x_1 + \frac{\tau(t_i - t_k)}{t_j - t_k} x_3\) and \(x_0 = \frac{\pi(t_i - t_k)}{t_j - t_k} x_1 - \frac{\sigma(t_i - t_k)}{t_j - t_k} x_3\) into the defining equation for \(Q\). We thus have
ALL LINES ON A SMOOTH CUBIC SURFACE IN TERMS OF THREE SKEW LINES

$Q \cap BAL_{2,k} = \mathbb{V}(\frac{\sigma}{\pi}x_1^2 + (\frac{\gamma(t_i-t_j)+\rho}(t_j-t_k) - \frac{\delta}{\pi}(t_t-t_k))x_1x_3 - \frac{\sigma}{\pi}(t_i-t_j)x_2^2)$. Lines in the ruling M_s are determined by the ratio $\frac{x_1}{x_3}$, so it suffices to solve the quadratic equation

$\gamma \delta (\frac{x_1}{x_3})^2 + (\frac{\gamma(t_i-t_j)+\rho}{\pi}(t_j-t_k) - \frac{\delta}{\pi}(t_t-t_k)) \frac{x_1}{x_3} - \frac{\sigma}{\pi}(t_i-t_j) = 0$. These solutions are given by

$$\frac{x_1}{x_3} = \frac{-\frac{\gamma(t_i-t_j)(t_j-t_k)+\rho}{\pi}(t_j-t_k) - \delta(t_i-t_k)^2}{\pm \sqrt{\left(\frac{\gamma(t_i-t_j)(t_j-t_k)+\rho}{\pi}(t_j-t_k) - \delta(t_i-t_k)^2\right)^2 + \frac{4\gamma \delta \sigma}{\pi}(t_i-t_j)}}.$$

Notation 7.2. Note that $\gamma, \delta, \varepsilon$ (see Equation 7.1) and π, ρ, σ (see Equation 7.2) depend on i, j, k. Let $\gamma_{i,j,k}, \delta_{i,j,k}, \varepsilon_{i,j,k}, \pi_{i,j,k}, \rho_{i,j,k}, \sigma_{i,j,k}$ denote the values of $\gamma, \delta, \varepsilon, \pi, \rho, \sigma$ as functions of i, j, k. Furthermore, let

$$q_{i,j,k}^+ = \frac{1}{2\gamma} \cdot \left(-\frac{\gamma(t_i-t_j)(t_j-t_k)+\rho}{\pi}(t_j-t_k) - \delta(t_i-t_k)^2 \right)$$

$$+ \sqrt{\left(\frac{\gamma(t_i-t_j)(t_j-t_k)+\rho}{\pi}(t_j-t_k) - \delta(t_i-t_k)^2\right)^2 + \frac{4\gamma \delta \sigma}{\pi}(t_i-t_j)}.$$

and

$$q_{i,j,k}^- = \frac{1}{2\gamma} \cdot \left(-\frac{\gamma(t_i-t_j)(t_j-t_k)+\rho}{\pi}(t_j-t_k) - \delta(t_i-t_k)^2 \right)$$

$$- \sqrt{\left(\frac{\gamma(t_i-t_j)(t_j-t_k)+\rho}{\pi}(t_j-t_k) - \delta(t_i-t_k)^2\right)^2 + \frac{4\gamma \delta \sigma}{\pi}(t_i-t_j)}.$$

It follows that we have the line $M_{q_{i,j,k}^+} = \mathbb{V}(x_0 - q_{i,j,k}^+ x_2, x_1 - q_{i,j,k}^+ x_3)$.

Proposition 7.3. We have the equations

$$E_k = \mathbb{V}(x_0 - t_i x_1 - \delta_{i,j,k} q_{i,j,k}^+(x_2 - t_i x_3),$$

$$(\frac{t_i-t_k}{t_j-t_k} - \gamma_{ij,k} q_{i,j,k}^+(x_0 - t_j x_1) - \varepsilon_{i,j,k} q_{i,j,k}^+(x_2-t_j x_3))$$

and

$$L_{i,j} = \mathbb{V}(x_0 - t_i x_1 - \delta_{i,j,k} q_{i,j,k}^-(x_2 - t_i x_3),$$

$$(\frac{t_i-t_k}{t_j-t_k} - \gamma_{ij,k} q_{i,j,k}^-(x_0 - t_j x_1) - \varepsilon_{i,j,k} q_{i,j,k}^-(x_2-t_j x_3)).$$

Proof. Without loss of generality, we may assume $BAC_k = \mathbb{V}(x_0 - q_{i,j,k}^+ x_2, x_1 - q_{i,j,k}^+ x_3)$ and $BAL_{i,j} = \mathbb{V}(x_0 - q_{i,j,k}^+ x_2, x_1 - q_{i,j,k}^+ x_3)$. We thus have $C_k = (BA)^{-1}\mathbb{V}(x_0 - q_{i,j,k}^+ x_2, x_1 - q_{i,j,k}^+ x_3)$ and $L_{i,j} = (BA)^{-1}\mathbb{V}(x_0 - q_{i,j,k}^+ x_2, x_1 - q_{i,j,k}^+ x_3)$. The inverse matrices are

$$A^T = \frac{1}{t_j-t_i} \begin{pmatrix} 1 & -1 & 0 & 0 \\ -t_i & t_j & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -t_i & t_j \end{pmatrix}$$

and

$$B^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{t_i-t_k}{t_j-t_k} & 0 & -\gamma_{i,j,k} \\ 0 & 0 & \delta_{i,j,k} & 0 \\ 0 & 0 & 0 & -\varepsilon_{i,j,k} \end{pmatrix}.$$
8. The general case

Let \(S' = \mathcal{V}(f') \) be a smooth cubic surface, where

\[
f'(x_0, x_1, x_2, x_3) = \sum_{i+j+k+l=3} \beta_{i,j,k,l} x_0^i x_1^j x_2^k x_3^l.
\]

Moreover, let

\[
\Lambda_1 = \mathcal{V}(\sum_{i=0}^{3} a_i x_i, \sum_{i=0}^{3} a'_i x_i),
\]

\[
\Lambda_2 = \mathcal{V}(\sum_{i=0}^{3} b_i x_i, \sum_{i=0}^{3} b'_i x_i),
\]

\[
\Lambda_3 = \mathcal{V}(\sum_{i=0}^{3} c_i x_i, \sum_{i=0}^{3} c'_i x_i)
\]

be three skew lines contained in \(S' \). We will give a projective change of coordinates \(A \) taking \(\Lambda_1 \) to \(E_i \) for \(1 \leq i \leq 3 \). Applying the work of the previous sections of the paper, we will have formulas for all 27 lines on \(AS' \), with each \(\alpha_{i,j,k,l} \) being given by a formula in terms of the \(\beta_{i,j,k,l} \). The formulas for the 27 lines on \(S' \) will then be obtained by applying \(A^{-1} \). Consider the matrix

\[
(B^{-1})^T = \begin{pmatrix}
a_0 & a'_0 & b_0 & b'_0 \\
a_1 & a'_1 & b_1 & b'_1 \\
a_2 & a'_2 & b_2 & b'_2 \\
a_3 & a'_3 & b_3 & b'_3
\end{pmatrix},
\]

which gives \(BE_1 = \Lambda_1 \) and \(BE_2 = \Lambda_2 \). Since \(\Lambda_1 \) and \(\Lambda_2 \) are skew, \(B \) is non-singular. Next, we will give a projective change of coordinates \(C \) that fixes \(E_1 \) and \(E_2 \) and takes \(B^{-1} \Lambda_3 \) to \(E_3 \). The composite change of coordinates \(CB^{-1} \) will then be the desired change of coordinates \(A \). Let

\[
B^{-1} \Lambda_3 = \mathcal{V}(\sum_{i=0}^{3} c_i x_i, \sum_{i=0}^{3} c'_i x_i).
\]

Since \(B \) is non-singular, the lines \(E_1, E_2, \) and \(B^{-1} \Lambda_3 \) are skew. Thus \(B^{-1} \Lambda_3 \) is not a subspace of \(\{x_0 = 0\} \) or \(\{x_3 = 0\} \), so \(B^{-1} \Lambda_3 \) is determined by the points \(B^{-1} \Lambda_3 \cap \{x_0 = 0\} = [0 : a : b : c] \) and \(B^{-1} \Lambda_3 \cap \{x_3 = 0\} = [d : e : f : 0] \). Moreover, since \(B^{-1} \Lambda_3 \) does not meet \(E_1 \) or \(E_2 \), we may assume that \(B^{-1} \Lambda_3 \cap \{x_0 = 0\} = [0 : 1 : b : c] \) and \(B^{-1} \Lambda_3 \cap \{x_3 = 0\} = [d : e : 1 : 0] \). In terms of the defining equations for \(B^{-1} \Lambda_3 \), we have

\[
b = \frac{c_1 c_3 - c_1 c'_3}{c_2 c'_3 - c'_2 c_3}, \quad c = \frac{c_1 c'_2 - c'_1 c_2}{c_2 c'_3 - c'_2 c_3}, \quad d = \frac{c_1 c'_2 - c'_1 c_2}{c_0 c'_1 - c'_0 c_1}, \quad e = \frac{c_0 c_2 - c_0 c'_2}{c_0 c'_1 - c'_0 c_1}.
\]
Note that c and d are either both zero or both non-zero. If c, d are both zero, then we instead construct a projective change of coordinates taking $B^{-1}\Lambda_3 \cap \{x_1 = 0\}$ and $B^{-1}\Lambda_3 \cap \{x_2 = 0\}$ to $[1:0:1:0]$ and $[0:1:0:1]$, respectively. We omit these calculations and simply discuss the case when c, d are non-zero. If c, d are non-zero, the projective change of coordinates given by

$$C = \begin{pmatrix} \frac{1}{d} & 0 & 0 & 0 \\ \frac{2}{d} & 1 & 0 & 0 \\ 0 & 0 & 1 & -\frac{b}{c} \\ 0 & 0 & 0 & \frac{c}{c} \end{pmatrix}$$

gives us $C([0:1:b:c]) = [0:1:0:1]$ and $C([d:e:1:0]) = [1:0:1:0]$. Thus $CB^{-1}\Lambda_3 = E_3$. Moreover, $CE_1 = E_1$ and $CE_2 = E_2$, so the projective change of coordinates $A = CB^{-1}$ takes $\Lambda_1, \Lambda_2, \Lambda_3$ to E_1, E_2, E_3, as desired. We may thus apply the work done in previous sections to the surface $CB^{-1}S'$, where the $\alpha_{i,j,k,l}$ will now be determined as functions of $\beta_{i,j,k,l}$. For each line $L \subset S$, we then get a line $BC^{-1}L \subset S'$.

9. Smooth cubic surfaces over \mathbb{R}

Over the real numbers, Segre showed that a smooth cubic surface contains 3, 7, 15, or 27 lines [Seg42]. Segre further classifies these lines into two types, namely hyperbolic lines and elliptic lines. Finashin-Kharlamov [FK12] and Okonek-Teleman [OT11] note that Segre in fact proved that the difference between the number h of hyperbolic lines and the number e of elliptic lines on a real smooth cubic surface is always 3. We note that if we are given three skew lines on a real smooth cubic surface S, then we have at least one real root of $g(t)$ (see Proposition 3.1). Without loss of generality, we may assume that t_4 is a real root of $g(t)$, and we thus have that the line C_4 is defined over \mathbb{R}. In this case, S contains more than three lines and therefore must contain elliptic lines. As a result, we have proved the following proposition.

Proposition 9.1. If S is a real smooth cubic surface that contains no elliptic lines, then the three lines contained in S are not skew.

In fact, we can prove that S contains three skew lines if and only if S contains an elliptic line. First, we prove a basic graph theoretic fact that will simplify our argument.

Proposition 9.2. Let G be a graph of order at least seven, such that for any triple of vertices v_1, v_2, v_3, at least two of v_1, v_2, v_3 are connected by an edge. Then G contains two distinct 3-cycles that share an edge.

Proof. If G has at least three connected components, then three vertices coming from distinct components do not share any edges, so G can have at most two connected components. If G has two connected components (say G_1 and G_2), then one component of G has at least four vertices. Without loss of generality, we may assume that G_1 has at least four vertices. Taking a vertex from G_2, the component G_1 must have diameter 1, which implies that G_1 contains two distinct 3-cycles that share an edge. Finally, suppose that G is connected. Fixing a vertex v of G, the subgraph G' of vertices that are distance
greater than 1 from v must have diameter 1. If G' has four or more vertices, then G contains two distinct 3-cycles that share an edge. If G' contains zero or one vertex, then v has at least five adjacent vertices. Any triple of these v-adjacent vertices must have at least one edge between them, which forces G to contain two distinct 3-cycles that share an edge. If G' contains two vertices, then G contains the graph illustrated in Figure 1. If G' contains three vertices, then G contains the graph illustrated in Figure 2. In either case, we select three vertices that are pairwise non-adjacent and add an edge between two of them. Repeating this process will always yield two distinct 3-cycles that share an edge, as desired.

\[\text{Figure 1.} \quad \text{Figure 2.} \]

Lemma 9.3. A real smooth cubic surface S contains three skew lines if and only if S contains an elliptic line.

Proof. By Proposition 9.1 and Segre’s count of lines on a real smooth cubic surface, we may assume that S contains at least seven real lines, say $\Lambda_1, ..., \Lambda_7$. We represent $\{ \Lambda_i \}$ and their intersections as a graph G. The vertices of G are given by the lines Λ_i, and vertices are connected by an edge whenever the corresponding lines intersect each other. Note that a 3-cycle corresponds to three coplanar lines. By Bézout’s Theorem, the plane containing these lines cannot intersect S in another line, so we cannot have two distinct 3-cycles in G that share an edge. The contrapositive of Proposition 9.2 implies that G has three vertices with no shared edge among them, which means that S contains three skew lines.

If S is a real smooth cubic surface that contains an elliptic line, then we can determine the number of real lines contained in S by analyzing the formulas obtained in this paper.

Theorem 9.4. Let S be a real smooth cubic surface that contains an elliptic line.

(a) S contains exactly 7 real lines if and only if $g(t)$ has only one real root.

(b) S contains exactly 15 real lines if and only if all roots of $g(t)$ are real and s_1, s_2 are not real numbers.

(c) S contains exactly 27 real lines if and only if all roots of $g(t)$ are real and s_1, s_2 are real numbers.

Proof. By Lemma 9.3, S contains three skew lines. Without loss of generality, we may assume that S contains the lines $E_1 = \mathbb{V}(x_0, x_1)$, $E_2 = \mathbb{V}(x_2, x_3)$, $E_3 = \mathbb{V}(x_0 - x_2, x_1 - x_3)$ and that t_4 is a real root of $g(t)$. We thus have that the lines $C_4, L_{1,4}, L_{2,4}, L_{3,4}$ are defined over \mathbb{R}. If S contains exactly 7 real lines, then this accounts for all lines contained in
S, so $g(t)$ can only have one real root. Conversely, if $g(t)$ only has one real root, then $C_5, C_6, L_{i,5}, L_{i,6}$ are not real for $1 \leq i \leq 3$, so S contains at most 19 lines. Since $L_{3,5}$ is not defined over \mathbb{R}, the lines C_3 and $L_{1,2}$ are also not defined over \mathbb{R} by Proposition 5.5, so S contains at most 17 lines. Finally, E_j is residual to C_3 and $L_{3,j}$ for $4 \leq j \leq 6$, so the fact that C_3 is not defined over \mathbb{R} implies that E_j is also not defined over \mathbb{R}. Thus S contains at most 14 lines, so S contains exactly 7 lines. This proves (a). If all roots of $g(t)$ and s_1, s_2 are real, then all lines computed in Sections 3–6 are real. Moreover, Harris shows that the remaining lines on S are rationally determined [Har79, p. 719], which gives us that all lines on S are real. Conversely, if a root of $g(t)$ or s_1, s_2 were not real, then some of the lines in S would not be defined over \mathbb{R}, proving (c). Finally, if all roots of $g(t)$ are real and s_1, s_2 are not real, then our process gives us all the lines up until C_3 and $L_{1,2}$ (see Sections 3 and 4), yielding a total of 15 lines on S. Moreover, the lines C_3 and $L_{1,2}$ are not real by Proposition 5.5, so S contains fewer than 27 real lines and hence contains exactly 15 real lines. Conversely, suppose S contains exactly 15 real lines. By part (a), we know that all roots of $g(t)$ must be real. If s_1, s_2 are real numbers, then part (c) implies that S contains 27 real lines, which contradicts our assumption that S contains exactly 15 real lines. Thus s_1, s_2 are not real, which proves (b). \[\square \]

References

Department of Mathematics, Duke University, Durham, NC

E-mail address: mckean@math.duke.edu

School of Mathematics, Georgia Institute of Technology, Atlanta, GA

E-mail address: dminahan6@gatech.edu

School of Mathematics, Georgia Institute of Technology, Atlanta, GA

E-mail address: kafuka@gatech.edu
Using the formulas generated in this paper, we are able to write down explicit equations for real cubic surfaces with 27, 15, or 7 lines. Let

\[f_1 = x_0^2 x_2 - x_0 x_2^2 + x_0^2 x_3 - x_0 x_1 x_2 + \frac{17}{39} x_1 x_2^2 - \frac{17}{39} x_0 x_2 x_3 + 2 x_1^2 x_2 - 3 x_0 x_1 x_3 + \frac{12}{13} x_0 x_3^2 + \frac{1}{13} x_1 x_2 x_3, \]

\[f_2 = x_0^2 x_2 - x_0 x_2^2 + x_0^2 x_3 - x_0 x_1 x_2 + x_1^2 x_2 - 2 x_0 x_1 x_3 + x_1 x_2^2 - x_0 x_2 x_3 - x_0 x_3^2 + 2 x_1 x_2 x_3, \]

\[f_3 = x_0^2 x_2 - x_0 x_2^2 + 2 x_0^2 x_3 - 2 x_0 x_1 x_2 + x_1^2 x_2 - x_0 x_1 x_3 + x_1^2 x_3 - x_1 x_3^2. \]

Figure 3 shows the vanishing of \(f_1 \) as a real cubic surface with its 27 lines. Figure 4 shows the vanishing of \(f_2 \) as a real cubic surface with its 15 lines. Figure 5 shows the vanishing of \(f_3 \) as a real cubic surface with its 7 lines.
Figure 4. Real cubic surface with 15 lines

Figure 5. Real cubic surface with 7 lines
APPENDIX B. TABLE OF LINES

In the following tables, we describe a line $L = \forall (\sum_{i=0}^{3} a_i x_i, \sum_{i=0}^{3} b_i x_i)$ by listing its coefficients $a_0, ..., a_3, b_0, ..., b_3$ as follows:

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We also provide references to the relevant notation from throughout the paper.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Section</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_{i,j,k,l}$</td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>t_4, t_5, t_6</td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>$c_1, c_2, c_3, d_1, d_2, d_3$</td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>u_1, u_2, u_3, v_2, v_3</td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>s_1, s_2</td>
<td></td>
<td>5.4</td>
</tr>
<tr>
<td>$m_1, n_1, p_1, m_2, n_2, p_2$</td>
<td></td>
<td>6.2</td>
</tr>
<tr>
<td>$h_1, j_1, k_1, h_2, j_2, k_2$</td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>$\gamma_{i,j,k}, \delta_{i,j,k}, \varepsilon_{i,j,k}$</td>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>$\pi_{i,j,k}, \rho_{i,j,k}, \sigma_{i,j,k}$</td>
<td></td>
<td>7.2</td>
</tr>
<tr>
<td>$q^+_{i,j,k}$</td>
<td></td>
<td>7.2</td>
</tr>
</tbody>
</table>
All Lines on a Smooth Cubic Surface in Terms of Three Skew Lines

<table>
<thead>
<tr>
<th>α_1</th>
<th>α_2</th>
<th>α_3</th>
<th>β_1</th>
<th>β_2</th>
<th>β_3</th>
<th>γ_1</th>
<th>γ_2</th>
<th>γ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>s</td>
<td>c</td>
<td>t</td>
<td>s</td>
<td>c</td>
<td>t</td>
<td>s</td>
<td>c</td>
</tr>
<tr>
<td>$-\gamma_0$</td>
<td>$+\gamma_0$</td>
<td>γ_0</td>
<td>$-\gamma_0$</td>
<td>$+\gamma_0$</td>
<td>γ_0</td>
<td>$-\gamma_0$</td>
<td>$+\gamma_0$</td>
<td>γ_0</td>
</tr>
<tr>
<td>$+\gamma_0$</td>
<td>$-\gamma_0$</td>
<td>$-\gamma_0$</td>
<td>$+\gamma_0$</td>
<td>$-\gamma_0$</td>
<td>$-\gamma_0$</td>
<td>$+\gamma_0$</td>
<td>$-\gamma_0$</td>
<td>$-\gamma_0$</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
</tbody>
</table>