ON ERGODIC TWO-ARMED BANDITS

BY PIERRE TARRÈS, PIERRE VANDEKERKHOVE

University of Oxford and Université Paris-Est, Marne-la-Vallée

A device has two arms with unknown deterministic payoffs, and the aim is to asymptotically identify the best one without spending too much time on the other. The Narendra algorithm offers a stochastic procedure to this end. We show under weak ergodic assumptions on these deterministic payoffs that the procedure eventually chooses the best arm (i.e. with greatest Cesaro limit) with probability one, for appropriate step sequences of the algorithm. In the case of i.i.d. payoffs, this implies a “quenched” version of the “annealed” result of Lamberton, Pagès and Tarrès in 2004 [6] by the law of iterated logarithm, thus generalizing it.

More precisely, if \((\eta_{i,\ell})_{i \in \mathbb{N}, \ell \in \{A, B\}}\) are the deterministic reward sequences we would get if we played at time \(i\), we obtain infallibility with the same assumption on nonincreasing step sequences on the payoffs as in [6], replacing the i.i.d. assumption by the hypothesis that the empirical averages \(\sum_{i=1}^{n} \eta_{A,i}/n\) and \(\sum_{i=1}^{n} \eta_{B,i}/n\) converge, as \(n\) tends to infinity, respectively to \(\theta_A\) and \(\theta_B\), with rate at least \(1/(\log n)^{1+\varepsilon}\), for some \(\varepsilon > 0\).

We also show a fallibility result, i.e. convergence with positive probability to the choice of the wrong arm, which implies the corresponding result of [6] in the i.i.d. case.

1. Introduction.

1.1. General introduction. The so-called two-armed bandit is a device with two arms, each one yielding an outcome in \(\{0, 1\}\) at each time step, irrespective of the strategy of the player, who faces the challenge of choosing the best one without loosing too much time on the other.

The Narendra algorithm is a stochastic procedure devised to this end, which was initially introduced by Norman, Shapiro and Narendra [12, 14] in the fields of mathematical psychology and learning automata. An application to optimal adaptive asset allocation in a financial context has been developed by Niang [11].

*Supported in part by the Swiss National Foundation Grant 200021-1036251/1, and by a Leverhulme Prize.

AMS 2000 subject classifications: Primary 62L20, 62L20; secondary 93C40, 91E40, 68T05, 91B32.

Keywords and phrases: Convergence, ergodicity, stochastic algorithms, two-armed bandit.
Formally, let \((\Omega, \mathcal{F}, P)\) be a probability space. The Narendra two-armed bandit algorithm is defined as follows. At each time step \(n \in \mathbb{N}\), we play source \(A\) (resp. source \(B\)) with probability \(X_n\) (resp. \(1 - X_n\)), where \(X_0 = x \in (0, 1)\) is fixed and \(X_n\) is updated according to the following rule, for all \(n \geq 0\):

\[
X_{n+1} = \begin{cases}
X_n + \gamma_{n+1}(1 - X_n) & \text{if } U_{n+1} = A \text{ and } \eta_{A,n+1} = 1 \\
(1 - \gamma_{n+1})X_n & \text{if } U_{n+1} = B \text{ and } \eta_{B,n+1} = 1 \\
X_n & \text{otherwise,}
\end{cases}
\]

where \((\gamma_n)_{n \geq 1}\) is a deterministic sequence taking values in \((0, 1)\), \(U_{n+1}\) is the random variable corresponding to the label of the arm played at time \(n + 1\), and \(\eta_{\ell,n+1}\) denotes the payoff, taking values in \(\{0, 1\}\), of source \(\ell \in \{A, B\}\) at time \(n + 1\).

We assume without loss of generality that \(U_{n+1} = A \mathbb{I}_{\{I_{n+1} \leq X_n\}} + B \mathbb{I}_{\{I_{n+1} > X_n\}}\), where \((I_n)_{n \geq 1}\) is a sequence of independent uniformly distributed random variables on \([0, 1]\).

The literature on this algorithm generally assumes that the sequences \((\eta_{A,n})_{n \geq 1}\) and \((\eta_{B,n})_{n \geq 1}\) are independent with Bernoulli distributions of parameters \(\theta_A\) and \(\theta_B\), where \(\theta_A > \theta_B\), the aim being to determine whether \((X_n)_{n \in \mathbb{N}}\) a.s. converges to 1 or not as \(n\) tends to infinity.

Notwithstanding the apparent simplicity of this stochastic procedure, the first criteria on a.s. convergence to “the good arm” under the above i.i.d. assumptions were only obtained thirty years after the original definition of this Narendra algorithm, by Tarrès [15], and Lamberton, Pagès and Tarrès [6] in a more general framework. Recently Lamberton and Pagès established the corresponding rate of convergence [4], and proposed and studied a penalized version [5]. Note that a game theoretical question arising in the context of two-armed bandits was recently studied by Benaïm and Ben Arous [1], and Pagès [13].

Our work focuses on the understanding of the Narendra two-armed bandit algorithm under the assumption that the payoff sequences \((\eta_{\ell,n})_{n \geq 1}\), \(\ell \in \{A, B\}\), are unknown and deterministic. Under the following condition \((S)\) on the step sequence (required in [6], but without monotonicity), and weak ergodic assumption \((E2)\) emphasizing the rate at which \(A\) must be asymptotically better than \(B\), we show that \(X_n\) a.s. converges to 1. Heuristically, the result points out that, even with strongly dependent outcomes, \(X_n\) accumulates sufficient statistical information on the ergodic behaviour of the two arms to induce a corresponding appropriate decision.
More precisely, let us introduce the following \textit{step sequence} and \textit{ergodic} assumptions.

Step sequence Conditions. Let, for all $n \in \mathbb{N} \cup \{\infty\}$, $\Gamma_n = \sum_{k=1}^{n} \gamma_k$.

Let (S1) and (S2) be the following assumptions on the step sequence $(\gamma_n)_{n \in \mathbb{N}}$:

(S1) $(\gamma_n)_{n \geq 1}$ is nonincreasing and $\Gamma_\infty = \infty$;
(S2) $\gamma_n = O(\Gamma_n e^{-\theta_B \Gamma_n})$.

Let (S) be the set of conditions (S1)-(S2).

Ergodic Conditions. Let (E) be the assumption that the outputs of arms A and B satisfy

$$
\left(\text{E}\right) \quad \frac{1}{n} \sum_{k=1}^{n} \eta_{A,k} \xrightarrow{n \to \infty} \theta_A, \quad \text{and} \quad \frac{1}{n} \sum_{k=1}^{n} \eta_{B,k} \xrightarrow{n \to \infty} \theta_B,
$$

where $\theta_A, \theta_B \in (0,1)$. The ergodic condition (E) means that the average payoff of arm A (resp. arm B) is θ_A (resp. θ_B), but does not assume anything on the corresponding rate of convergence. In order to introduce conditions on this rate, let us denote, for all $n \in \mathbb{N}$,

$$
R_n := \max_{\ell \in \{A,B\}} \left| \sum_{i=1}^{n} (\eta_{\ell,i} - \theta_{\ell}) \right|.
$$

Given a map $\phi : \mathbb{N} \to \mathbb{R}_+$ and $\theta_A, \theta_B \in (0,1)$, let us denote by (E$\phi$) the assumption that $R_n/\phi(n) \xrightarrow{n \to \infty} 0$.

Let (E1) and (E2) be condition (Eϕ), respectively with the following assumption on ϕ:

(E1) ϕ is nondecreasing concave on $[k_0, \infty)$ for some $k_0 \in \mathbb{N}$, and $\sup_{n \in \mathbb{N}} \gamma_n \phi(n) < \infty$.

(E2) $\phi(n) = \frac{n}{(\log(n + 2))^{1+\varepsilon}}$ for some $\varepsilon > 0$.

Note that (E) corresponds to (Eϕ) with $\phi(n) = n$, $n \in \mathbb{N}$, for which (E1) holds for instance in the case of a step sequence $\gamma_n = c/(c + n)$, $c > 0$. Also, the following Lemma 1, proved in Section 2, implies that (S)-(E2) \implies (E1).
Lemma 1 If condition (S) holds, then

$$\limsup_{n \to \infty} \frac{\gamma_n n}{\log n} \leq \limsup_{n \to \infty} \frac{\Gamma_n}{\log n} \leq 1/\theta_B.$$

The following Theorems 2 and 3 provide assumptions for convergence of the Narendra sequence $(X_n)_{n \geq 0}$ towards 0 or 1 as n tends to infinity, respectively convergence towards 1 when $\theta_A > \theta_B$ (i.e. asymptotic choice of the “right arm”).

Theorem 2 Under assumptions $(S1)$-$(E1)$, the Narendra sequence $(X_n)_{n \in \mathbb{N}}$ converges $\mathbb{P}_x - a.s$ towards 0 or 1 as n tends to infinity.

Theorem 3 Under assumptions (S)-$(E2)$ and $\theta_A > \theta_B$, the Narendra sequence $(X_n)_{n \in \mathbb{N}}$ converges $\mathbb{P}_x - a.s$ towards 1 as n tends to infinity.

Recall that the above conditions $(E1)$ and $(E2)$ are purely deterministic. If we let the sequences $(\eta_{A,i})_{i \in \mathbb{N}}$ and $(\eta_{B,i})_{i \in \mathbb{N}}$ be distributed as i.i.d. sequences with expectations θ_A and θ_B, then $(E2)$ almost surely occurs as a consequence of the law of iterated logarithm. Assuming (S) and $\theta_A > \theta_B$, Theorem 3 implies that the algorithm $(X_n)_{n \in \mathbb{N}}$ almost surely converges to 1, which generalizes the corresponding infallibility Proposition 5 proved by Lamberton, Pagèes and Tarrès in [6] for nonincreasing step sequences $(\gamma_n)_{n \in \mathbb{N}}$.

In practice, the Narendra algorithm is used in the context of performance assessment, in applications either in automatic control or in financial mathematics, and the i.i.d. assumption looks rather unrealistic, since the performance depends in general on parameters that evolve slowly and randomly in time. The following framework provides a possible generalization.

Suppose that $(S_{\ell,i})_{i \in \mathbb{N}}, \ell \in \{A,B\}$, are ergodic stationary Markov chains taking values in a measurable space $(\mathcal{X}, \mathcal{X})$, with transition kernel Q_ℓ and stationary initial distribution π_ℓ. Let us consider a measurable event $C \in \mathcal{X}$, and define sequences $(\eta_{\ell,i})_{i \in \mathbb{N}}$, for $\ell \in \{A,B\}$, as follows:

\begin{equation}
\eta_{\ell,i} = 1_{\{S_{\ell,i} \in C\}}, \quad i \in \mathbb{N}.
\end{equation}

These random sequences $(\eta_{\ell,i})_{i \in \mathbb{N}}$ are functions of Markov chains and satisfy, as a consequence, the ergodic condition (E), with

$$\theta_\ell = \pi_\ell(S_{\ell,0} \in C).$$

The sequences $(S_{\ell,i})_{i \in \mathbb{N}}, \ell \in \{A,B\}$, represent the agents outputs, from which $(\eta_{\ell,i})_{i \in \mathbb{N}}$ extracts scores through target assessment. Note that, contrary to $(S_{\ell,i})_{i \in \mathbb{N}}, (\eta_{\ell,i})_{i \in \mathbb{N}}$ is not Markov in general.
Miao and Yang [8] establish under weak conditions (concerning mainly the transition kernels Q_k) the law of iterated logarithm for additive functionals of Markov chains, thus providing the required ergodic rate of convergence (E2).

Let us now show a simple fallibility result that will also imply the corresponding result of [6] in the i.i.d. case.

Theorem 4 Assume $\theta_A > \theta_B$ and $\sum_{n \geq 0} \prod_{k=1}^{n} (1 - \gamma_k \eta_{B,k}) < \infty$. Then $P(\lim_{n \to \infty} X_n = 0) > 0$.

Remark 1.1 In the case where $(\eta_{B,k})_{k \geq 0}$ is an i.i.d. sequence of random variables, then
\[
\mathbb{E}_x \left(\sum_{n \geq 0} \prod_{k=1}^{n} (1 - \gamma_k \eta_{B,k}) \right) = \sum_{n \geq 0} \prod_{k=1}^{n} (1 - \gamma_k \theta_B) < \infty
\]
ensures that the third condition of Theorem 4 is fulfilled, and therefore Theorem 4 implies the fallibility result Theorem 1 (b) in [6].

Remark 1.2 In the general (ergodic) case, if $\sum \gamma_n^2 < \infty$, $\sum \Gamma_n |\phi''(n)| < \infty$ and $\limsup \Gamma_n |\phi'(n)| < \infty$, then the proof of Lemma 10 implies that the conditions of Theorem 4 are equivalent to $\sum \exp(-\Gamma_n \theta_B) < \infty$ and $\theta_A > \theta_B$. These assumptions hold for instance if $\gamma_n = c/(c+n)$ and $\phi(n) = n/((\log(n+2))^{1+\varepsilon}$ for some $\varepsilon > 0$, and $c\theta_B > 1$ (see also the proof of Lemma 10).

Proof of Theorem 4: Recall that $X_0 = x \in (0,1)$. Let A be the event
\[
A := \{ \forall k \geq 1, I_k \leq X_k \} = \left\{ \forall n \geq 0, X_n = x \prod_{k=1}^{n} (1 - \gamma_k \eta_{B,k}) \right\}.
\]
Then
\[
P(A) = \prod_{n=1}^{\infty} \left(1 - x \prod_{k=1}^{n} (1 - \gamma_k \eta_{B,k}) \right) > 0 \iff \sum_{n \geq 0} \prod_{k=1}^{n} (1 - \gamma_k \eta_{B,k}) < \infty,
\]
and note that this last predicate, which is the second assumption of the theorem, obviously implies $\sum \gamma_n \eta_{B,n} = \infty$. Now, a.s. on A,
\[
X_n \leq x \exp \left(- \sum_{k=1}^{n} \gamma_n \eta_{B,n} \right) \overset{n \to \infty}{\longrightarrow} 0,
\]
which concludes the proof.\[\Box\]
Notation: the letter C will denote a positive real constant that may change from one inequality to the other.

We write ϕ' and ϕ'' for the first and second order discrete derivatives of ϕ: for all $n \geq 1,$

$$\phi'(n) := \phi(n) - \phi(n - 1), \quad \text{and} \quad \phi''(n) := \phi(n - 1) + \phi(n + 1) - 2\phi(n).$$

We let, for all $n \in \mathbb{N},$

$$\alpha_n := R_n / \phi(n), \quad \beta_n := \sup_{k \geq n} \alpha_k.$$

Note that, under assumption $(\mathbf{E}\phi),$ $\alpha_n, \beta_n \to 0.$

Given two real sequences $(u_n)_{n \geq 0}$ and $(v_n)_{n \geq 0},$ we write

$$u_n = \Box(v_n)$$

when, for all $n \geq 0,$ $|u_n| \leq |v_n|.$

1.2. Sketch of the proofs of Theorems 2 and 3. Our first aim is to write down, in the following Proposition 5, the evolution of $(X_n)_{n \geq 0}$ as a stochastic perturbation of the Cauchy-Euler procedure defined by

$$(3) \quad x_{n+1} = x_n + \gamma_{n+1} h(x_n),$$

where $h(x) := (\theta_A - \theta_B) f(x),$ with $f(x) := x(1 - x).$

However, contrary to the case of i.i.d. payoff sequences $(\eta_{\ell,n})_{n \geq 0},$ $\ell \in \{A, B\}$ considered in [6], the perturbation of the scheme (3) under an ergodic assumption (\mathbf{E}) does not only consist of a martingale, but also of an increment whose importance depends on $\phi,$ i.e. on the rate of convergence of the mean payoffs to θ_A and $\theta_B.$ More precisely let, for all $n \geq 1,$

$$\wedge_n = \sum_{k=1}^{n} \gamma_k f(X_{k-1})(\eta_{A,k} - \eta_{B,k} - (\theta_A - \theta_B)),$$

with the convention that $\wedge_0 = 0,$ and let $(M_n)_{n \geq 1}$ be an $(\mathcal{F}_n)_{n \geq 1}$-adapted martingale given by

$$M_n := \sum_{k=1}^{n} \gamma_k \varepsilon_k, \quad M_0 := 0$$

with

$$\varepsilon_k := \eta_{A,k}(1 - X_{k-1})(\mathbf{1}_{U_k = A} - X_{k-1}) + \eta_{B,k} X_{k-1}((1 - X_{k-1}) - \mathbf{1}_{U_k = B}).$$
Proposition 5 For all \(n \in \mathbb{N} \),
\[
X_n = x + M_n + \xi_n + (\theta_A - \theta_B) \sum_{k=1}^{n} \gamma_k f(X_{k-1}).
\]

PROOF: The updating rule (1) can be rewritten as
\[
X_{n+1} = X_n + \gamma_{n+1} \eta_{A,n+1}(1 - X_n) \mathbb{1}_{U_{n+1}=A} - \gamma_{n+1} \eta_{B,n+1} X_n \mathbb{1}_{U_{n+1}=B}
\]
(4)
\[
= X_n + \gamma_{n+1} \eta_{A,n+1}(1 - X_n)(\mathbb{1}_{U_{n+1}=A} - X_n) + \gamma_{n+1} \eta_{B,n+1} X_n((1 - X_n) - \mathbb{1}_{U_{n+1}=B}) + \gamma_{n+1} f(X_n)(\eta_{A,n+1} - \eta_{B,n+1}).
\]

Note that Proposition 5 can be interpreted as the property that the noise is multiplicative in the sense that, for all \(n \),
\[
\gamma_{n+1}^{-1}(\Lambda_{n+1} - \Lambda_n) = f(X_n)(\eta_{A,k} - \eta_{B,k} - (\theta_A - \theta_B))
\]
is the product of a function of \(X_n \) and a function of \((\eta_{A,n+1}, \eta_{B,n+1})\) outcome of the two arms at time \(n + 1 \).

Let us now provide estimates of the evolution of \((\Lambda_n)_{n\in\mathbb{N}}\), which will be necessary to the proof of Theorem 3; they will also imply Theorem 2 in passing. We note that Laruelle and Pagès [7] recently generalized the proof of this latter result as convergence of the ergodic dynamics towards an equilibrium points of the corresponding ODE under the assumption that the noise is multiplicative and a classical Lyapounov assumption, or more generally under a strong Lyapounov assumption, and technical conditions.

Now, \(\eta_{A,k} - \eta_{B,k} - (\theta_A - \theta_B) \) being erratic by the very nature of the question, these bounds will naturally involve a discrete integration by parts, in order to make the ergodic upper bound function \(\phi \) appear . However, \((\gamma_n f(X_{n-1}))_{n\in\mathbb{N}}\) is not a nonincreasing sequence in general so that the technique cannot work directly.

Instead, let us define, for all \(n \in \mathbb{N} \),
\[
\Delta_n := \frac{\gamma_n}{\prod_{k=1}^{n} (1 - \gamma_k)}, \quad S_n := \frac{1}{\prod_{k=1}^{n} (1 - \gamma_k)},
\]
with the convention that \(\Delta_0 = S_0 := 1 \). Remark that \(S_n \to \infty \) if and only if \(\sum_{n \geq 1} \gamma_n = +\infty \).

Note that \(x/S_n \) is a trivial lower bound for \(X_n \), and that
\[
\gamma_n = \frac{\Delta_n}{S_n}, \quad \text{with} \quad S_n = \sum_{k=0}^{n} \Delta_k.
\]
We first study the sequence \((\Psi_n)_{n \in \mathbb{N}}\) defined by

\[
\Psi_n := \sum_{k=n+1}^{\infty} \frac{\gamma_k}{S_k} (\eta_{A,k} - \eta_{B,k} - (\theta_A - \theta_B));
\]

\((\Psi_n)_{n \geq 1}\) is well-defined since, for all \(\ell \in \{A,B\}\)

\[
\sum_{k=2}^{\infty} \frac{\gamma_k}{S_k} |\eta_{\ell,k} - \theta_\ell| \leq \sum_{k=2}^{\infty} \frac{\gamma_k}{S_k} = \sum_{k=2}^{\infty} \left(\frac{1}{S_{k-1}} - \frac{1}{S_k} \right) = \frac{1}{S_1}
\]

since under (S1) we have \(S_n \rightarrow \infty\). Since \((\gamma_n/S_n)_{n \in \mathbb{N}}\) is itself nonincreasing (recall that \(\gamma_n \in (0,1)\)), we deduce the following Lemma 6 by an Abel transform, i.e. discrete integration. Moreover we observe that, for all \(n \geq m \geq 0\), the evolution of \(\land\) between time steps \(m\) and \(n\) is given by

\[
\land_n - \land_m = \sum_{k=m+1}^{n} S_{k-1} f(X_{k-1}) \frac{\gamma_k}{S_k} (\eta_{A,k} - \eta_{B,k} - (\theta_A - \theta_B)).
\]

Now, \((S_k f(X_k))_{k \in \mathbb{N}}\) is a nondecreasing sequence. Indeed, for all \(k \in \mathbb{N}\),

\(f(X_k) \geq (1 - \gamma_k) f(X_{k-1})\) since \(f\) is concave and \(X_k\) is the barycentre of \(X_{k-1}\) and either 0 or 1, with weights \(1 - \gamma_k\) and \(\gamma_k\), where \(f(0) = f(1) = 0\). We rely on this monotonicity and apply an Abel transform again, which enables us to show the following Lemma 7.

Lemma 6 Assume that \((\gamma_n)_{n \in \mathbb{N}}\) is nonincreasing, and that \(\phi\) is nondecreasing concave on \([k_0, \infty)\) for some \(k_0 \in \mathbb{N}\). Then, for all \(n \geq k_0\),

\[
|\Psi_n| \leq \frac{2}{S_{n-1}} [\phi'(n) + 2\gamma_n \phi(n)].
\]

Lemma 7 Let, for all \(n \in \mathbb{N}\),

\[
R'_n := \frac{2 \sup_{k \geq n} \beta_k [\phi'(k) + 2\gamma_k \phi(k)]}{1 - \gamma_n}.
\]

Under the assumptions of Lemma 6 we have, for all \(n \geq m \geq k_0\),

\[
|\land_n - \land_m| \leq R'_m \left[\sum_{k=m+1}^{n} \gamma_k f(X_{k-1}) + 2f(X_n) \right].
\]
Lemmas 6 and 7 are proved in Sections 3.2 and 3.3.

These results enable us to conclude the proof of Theorem 2. Indeed, by Proposition 5 and Lemma 7, for all \(n \geq m \geq 0 \),

\[
X_n - X_m = M_n - M_m + \land_n - \land_m + (\theta_A - \theta_B) \sum_{k=m+1}^{n} \gamma_k f(X_{k-1})
\]

\[
= M_n - M_m + (\theta_A - \theta_B + \Box(R'_m)) \sum_{k=m+1}^{n} \gamma_k f(X_{k-1}) + 2\Box(R'_m) f(X_n).
\]

We assume that \((E1)\) and \((S1)\) hold; thus \(R'_n \rightarrow 0 \). Let us prove by contradiction that

\[
\sum_{k=1}^{\infty} \gamma_k f(X_{k-1}) < \infty \text{ a.s.}
\]

holds. Indeed, let us assume the contrary; choose \(m \) be such that \(|R'_m| < |\theta_A - \theta_B| \). A.s. on \(\{ \sum_{k=1}^{\infty} \gamma_k f(X_{k-1}) = \infty \} \), using Chow’s lemma (see for instance [3]) and \(\mathbb{E}(\varepsilon_{k+1}^2 \mid \mathcal{F}_k) \leq 2f(X_k) \), we deduce

\[
M_n - M_m = o \left(\sum_{k=m+1}^{n} \gamma_k^2 f(X_{k-1}) \right) = o \left(\sum_{k=m+1}^{n} \gamma_k f(X_{k-1}) \right)
\]

and, therefore, for all \(n, m \in \mathbb{N} \),

\[
X_n - X_m = (\theta_A - \theta_B + \Box(R'_m) + o_{n \rightarrow \infty}(1)) \sum_{k=m+1}^{n} \gamma_k f(X_{k-1}) + O(1),
\]

which is contradictory, using \(X_n \in [0,1] \) for all \(n \in \mathbb{N} \).

This subsequently implies that, \(\mathbb{P}_x \)-almost surely, \((X_n)_{n \geq 0} \) is a Cauchy sequence and therefore converges to a limit random variable \(X_\infty \in [0,1] \). Now (7) implies that \(f(X_\infty) = 0 \), since \(\Gamma_\infty = \infty \), and therefore \(X_\infty = 0 \) or \(1 \) a.s.

The proof of Theorem 3 itself has two parts. The first one consists in showing a “brake phenomenon”, i.e. that \((X_n)_{n \geq 0} \) cannot in any case decrease too rapidly to 0 as \(n \) goes to infinity. We already observed that, trivially, \(X_n \) is lower bounded by \(x/S_n \). A better lower bound can easily be obtained: let us define, for all \(n \in \mathbb{N} \),

\[
S^B_n := \frac{1}{\prod_{k=1}^{n} (1 - \gamma_k \mathbb{I}_{\{I_k > X_{k-1}, \eta_{B,k-1} = 1\}})}, \text{ with initial condition } S^B_0 = 0,
\]
and, for all $n \geq 1$,
\[
\Delta_n^B := \gamma_n^B S_n^B, \quad Y_n^B := S_n^B X_n.
\]

Note that, as a consequence of the definition of the Narendra algorithm (1), for all $n \geq 0$,
\[
(8) \quad Y_{n+1}^B = \begin{cases}
Y_n^B + \Delta_n^B(1 - X_n) & \text{if } U_{n+1} = A \text{ and } \eta_{A,n+1} = 1 \\
Y_n^B & \text{otherwise.}
\end{cases}
\]

Roughly speaking, S_n^B is the product S_n restricted to playing and winning with B; x/S_n^B is straightforwardly a lower bound of X_n. Proposition 8, proved in Section 4.1, further claims that, for any $C > 0$, $C \log S_n^B/S_n$ is an asymptotic lower bound of X_n a.s. on $\{X_\infty = 0\}$.

Proposition 8 Under assumptions (S) and (E2),
\[
\{ \lim_{n \to \infty} X_n = 0 \} \subseteq \left\{ \limsup_{n \to \infty} \frac{X_n}{\log S_n^B/S_n} = \infty \right\} \quad p_x \text{-a.s.}
\]

The second part of the proof of Theorem 3 assumes $\theta_A > \theta_B$, and is given in Section 4.2. Recall that, by Theorem 2, X_n converges a.s. to 0 or 1 (using the remark that (S)-(E2) implies (E1), see remark before the statement of Lemma 1), so that we only need to show that $P(\lim X_n = 0) = 0$.

We study $(X_n)_{n \geq 0}$ as a perturbed Cauchy-Euler scheme and prove by Doob’s inequality that, starting from $C \log S_n^B/S_n$ for sufficiently large $C > 0$, X_n remains bounded away from 0 with lower bounded probability, which enables us to conclude that $X_\infty \neq 0$ a.s.

2. Deterministic estimates on the step sequence. We first recall below the two following preliminary remarks in [6] that (S2) implies on one hand that $\sum_{n=1}^{\infty} \gamma_n^2 < \infty$ and on the other hand that $\Gamma_n - \log S_n$ converges as n goes to infinity.

Then we prove Lemma 1 that (S) implies explicit asymptotic upper bounds on $(\gamma_n)_{n \in N}$ and $(\Gamma_n)_{n \in N}$.

Preliminary remark 1. Assumption (S2) implies $\sum_{n=1}^{\infty} \gamma_n^2 < \infty$ since, for all $n \in N$,
\[
\sum_{k=1}^{n} \gamma_k^2 \leq C \sum_{k=1}^{n} (\Gamma_k - \Gamma_{k-1}) \Gamma_k e^{-\theta_B \Gamma_k} \\
\leq C \int_{0}^{\Gamma_n} u e^{-\theta_B u} \, du \leq C \int_{0}^{\infty} u e^{-\theta_B u} \, du < \infty,
\]
using that $u \mapsto e^{-\theta_B u}$ is nonincreasing for $u > \theta_B^{-1}$.

Preliminary remark 2. The partial sums S_n and Γ_n satisfy for every $n \geq 1$,

$$\log S_n - \sum_{k=1}^{n} \frac{\gamma_k^2}{1 - \gamma_k} \leq \Gamma_n \leq \log S_n. \quad (9)$$

This follows from the easy comparisons

$$\Gamma_n = \frac{n}{S_k} \sum_{k=1}^{n} \frac{\Delta_k}{S_k} \left\{ \begin{array}{l} \leq \frac{1}{S_k} \int_{\frac{1}{\theta_B}}^{S_k} \frac{du}{u} = \log S_k \\
= \frac{1}{S_k} \int_{S_{k-1}}^{S_k} \frac{du}{u} \geq \sum_{k=1}^{n} (1 - \gamma_k) \int_{S_{k-1}}^{S_k} \frac{du}{u} \\
\geq \log S_n - \sum_{k=1}^{n} \frac{\gamma_k^2}{1 - \gamma_k}. \end{array} \right. \quad (10)$$

Proof of Lemma 1: The first inequality is elementary, since $\Gamma_n \geq n \gamma_n$, using that $(\gamma_n)_{n \geq 1}$ is a nonincreasing sequence by (S1). By assumption (S2), for some $C > 0$, for all $n \in \mathbb{N}$,

$$C \geq \frac{\gamma_n e^{\theta_B \Gamma_n}}{\Gamma_n}. \quad (11)$$

Using that $u \mapsto e^{\theta_B u}/u$ is increasing on $[1/\theta_B, \infty)$ we obtain that, for sufficiently large $n_0 \in \mathbb{N}$,

$$C(n - n_0) \geq \int_{n_0}^{\Gamma_n} \frac{e^{\theta_B x}}{x} dx \sim \frac{e^{\theta_B \Gamma_n}}{\theta_B \Gamma_n}. \quad (12)$$

Trivially $\log(e^{\theta_B \Gamma_n}/\theta_B \Gamma_n) \sim_{n \to \infty} \theta_B \Gamma_n$, so that (10) proves the second inequality. \(\square\)

3. Abel transforms.

3.1. **Preliminary estimates.** The following Lemmas 9 and 10 estimate the error in replacing the payoffs $\eta_{\ell,k}$ by their “average success rate” θ_{ℓ} in a sum weighted by a decreasing sequence $(\xi_n)_{n \in \mathbb{N}}$, by the use of Abel transforms, i.e. discrete integrations by parts. More precisely let, for all $n \in \mathbb{N}$ and $\ell \in \{A, B\}$,

$$\Phi_{n,\xi}^{\ell} = \sum_{k=1}^{n} \xi_k (\eta_{\ell,k} - \theta_{\ell})$$
be the corresponding deviation. Lemma 9 upper bounds \(|\Phi_{n,\xi}^\ell - \Phi_{m,\xi}^\ell| \) for all \(n \geq m \), whereas Lemma 10 shows that \(\Phi_{n,\xi} \) converges to a finite value under certain assumptions, which are fulfilled for instance when \(\xi := \gamma \) and (S)-(E2) holds.

Lemma 9 is the main tool in the proof of Lemmas 6 and 7, and the second part of Lemma 10 will be useful in the proof of Proposition 8 providing “brake phenomenon” bounds.

Lemma 9 Let \((\xi_n)_{n \in \mathbb{N}}\) be a positive real-valued nonincreasing sequence. Assume \(\phi \) is nondecreasing on \([k_0, \infty)\) for some \(k_0 \in \mathbb{N} \); then, for all \(n \geq m \geq k_0 \),

\[
|\Phi_{n,\xi}^\ell - \Phi_{m,\xi}^\ell| \leq \beta_m \left(\sum_{k=m+1}^n \xi_k \phi'(k) + 2 \xi_m \phi(m) \right)
\]

Proof: Let, for all \(n \in \mathbb{N} \) and \(\ell \in \{A, B\} \), \(\kappa_n^\ell := \sum_{k=1}^n (\eta_{k,\xi} - \theta_k) \). If \(n \geq m \geq k_0 \), then

\[
\Phi_{n,\xi}^\ell - \Phi_{m,\xi}^\ell = \sum_{k=m+1}^n \xi_k (\eta_{k,\xi} - \theta_k) = \sum_{k=m+1}^n \xi_k (\kappa_k^\ell - \kappa_{k-1}^\ell) = \sum_{k=m}^{n-1} \xi_k \kappa_k^\ell - \sum_{k=m}^{n-1} \xi_{k+1} \kappa_k^\ell
\]

\[
= \sum_{k=m}^{n-1} (\xi_k - \xi_{k+1}) \kappa_k^\ell + \xi_n \kappa_n^\ell - \xi_m \kappa_m^\ell. \tag{11}
\]

Now, using that \((\xi_n)_{n \geq 0}\) is nonincreasing,

\[
\left| \sum_{k=m}^{n-1} (\xi_k - \xi_{k+1}) \kappa_k^\ell \right| \leq \sum_{k=m}^{n-1} (\xi_k - \xi_{k+1}) R_k = \sum_{k=m}^{n-1} (\xi_k - \xi_{k+1}) \alpha_k \phi(k) \\
\leq \beta_m \sum_{k=m}^{n-1} (\xi_k - \xi_{k+1}) \phi(k) = \beta_m \left(\sum_{k=m}^{n-1} \xi_k \phi(k) - \sum_{k=m+1}^n \xi_k \phi(k-1) \right)
\]

\[
= \beta_m \left(\sum_{k=m+1}^n \xi_k (\phi(k) - \phi(k-1)) + \xi_m \phi(m) - \xi_n \phi(n) \right). \tag{12}
\]
In summary, (11) and (12) imply

\[
|\Phi_{n,\xi}^\ell - \Phi_{m,\xi}^\ell| \leq \beta_m \left(\sum_{k=m+1}^{n} \xi_k (\phi(k) - \phi(k-1)) + 2\xi_m \phi(m) \right)
\]

\[
= \beta_m \left(\sum_{k=m+1}^{n} \xi_k \phi'(k) + 2\xi_m \phi(m) \right).
\]

\[\square\]

Remark 3.1 Under assumption (E2), i.e. when \(\phi(k) := k(\log(k+2))^{-(1+\varepsilon)}\) for some \(\varepsilon > 0\), then

\[
\phi'(k) \leq \frac{1}{(\log(k+1))^{1+\varepsilon}}, \quad k \in \mathbb{N}.
\]

Indeed, for all \(x \in \mathbb{R}^+\),

\[
\left(\frac{d\phi}{dx}\right)(x) = \frac{1}{(\log(x+2))^{1+\varepsilon}} - \frac{(1+\varepsilon)x}{(x+2)(\log(x+2))^{2+\varepsilon}},
\]

and

\[
\phi'(k) \leq \sup_{x \in [k-1,k]} \left(\frac{d\phi}{dx}\right)(x).
\]

\[\square\]

Lemma 10 Given a positive real-valued nondecreasing sequence \((\xi_n)_{n \in \mathbb{N}}\) let, for all \(n \in \mathbb{N}\), \(\Xi_n := \sum_{k=1}^{n} \xi_k\). If \(\phi\) is nondecreasing on \([k_0, \infty)\) for some \(k_0 \in \mathbb{N}\), \(\sum_{k=1}^{\infty} \Xi_k \phi''(k) < \infty\) and \(\limsup_{n \to \infty} \Xi_n |\phi'(n)| = 0\) then, for all \(\ell \in \{A, B\}\), \((\Phi_{n,\xi}^\ell)_{n \in \mathbb{N}}\) converges to a finite real value as \(n\) goes to infinity.

In particular, under assumptions (S) and (E2), for all \(\ell \in \{A, B\}\), \((\Phi_{n,\gamma}^\ell)_{n \in \mathbb{N}}\) and \((\Phi_{n,\gamma/\Gamma}^\ell)_{n \in \mathbb{N}}\) (where \(\gamma = (\gamma_n)_{n \in \mathbb{N}}\) and \(\gamma/\Gamma = (\gamma_n/\Gamma_n)_{n \in \mathbb{N}}\)) converge to a finite real value as \(n\) goes to infinity.

Proof: For all \(m, n \geq k_0\) with \(n \geq m\), Lemma 9 implies

\[
|\Phi_{n,\xi}^\ell - \Phi_{m,\xi}^\ell| \leq \beta_m \left(\sum_{k=m+1}^{n} \xi_k \phi'(k) + 2\xi_m \phi(m) \right).
\]
But
\[
\sum_{k=m+1}^{n} \xi_k \phi'(k) = \sum_{k=m+1}^{n} (\Xi_k - \Xi_{k-1}) \phi'(k) = \sum_{k=m+1}^{n} \Xi_k \phi'(k) - \sum_{k=m}^{n-1} \Xi_k \phi'(k+1)
\]
\[
= \sum_{k=m}^{n-1} \Xi_k \phi'(k) - \phi'(k+1)) - \Xi_m \phi'(m) + \Xi_n \phi'(n)
\]
\[
- \sum_{k=m}^{n-1} \Xi_k \phi''(k) - \Xi_m \phi'(m) + \Xi_n \phi'(n).
\]

Let us now prove the convergence of \((\Phi_{\ell, n, \gamma})_{n \in \mathbb{N}} \), under assumptions (S)-(E2). Then \(\Gamma_n = O(\log n) \) by Lemma 1, and \(\phi'(n) = o \left(\frac{1}{\log n} \right) \) (see Remark 3.1), so that \(\Gamma_n \phi'(n) \xrightarrow{n \to \infty} 0 \). Now, there exist \(\lambda, \mu \in (0, 1) \) such that
\[
|\phi''(k)| = |(\phi(k+1) - \phi(k)) - (\phi(k) - \phi(k-1))| = \left| \frac{d\phi}{dx}(k + \mu) - \frac{d\phi}{dx}(k - \lambda) \right|
\]
\[
\leq 2 \sup_{x \in [k-1, k+1]} \left| \frac{d^2 \phi}{dx^2} \right|,
\]
and
\[
\left(\frac{d^2 \phi}{dx^2} \right)(x) = \frac{1 + \varepsilon}{(x+2)(\log(x+2))^{2+\varepsilon}} \left[-2 + \frac{x}{x+2} \left(1 + \frac{2 + \varepsilon}{\log(x+2)} \right) \right]
\]
\[
= O \left(\frac{1}{x(\log(x+2))^{2+\varepsilon}} \right), \quad x \in \mathbb{R}^+ \setminus \{0\},
\]
so that \(\sum \Gamma_k |\phi''(k)| < \infty \), and the assumptions of the first statement are fulfilled. The convergence of \((\Phi_{\ell, n, \gamma/\Gamma})_{n \in \mathbb{N}} \) follows similarly, since \(\gamma_n/\Gamma_n = O(\gamma_n) \). \(\square \)

3.2. Proof of Lemma 6. Recall that \(\Psi_\infty = 0 \) (see first paragraph after the definition of \((\Psi_n)_{n \in \mathbb{N}} \), Section 1.2). Hence, using Lemma 9,

\[
|\Psi_n| = \left| \sum_{k=n+1}^{\infty} \frac{\gamma_k}{S_{k-1}} (\eta_{A,k} - \eta_{B,k} - (\theta_A - \theta_B)) \right|
\]
\[
\leq 2\beta_n \left\{ \sum_{k=n+1}^{\infty} \frac{\gamma_k}{S_{k-1}} \phi'(k) + 2 \frac{\gamma_n}{S_{n-1}} \phi(n) \right\}
\]
\[
\leq 2\beta_n \left\{ \phi'(n) \sum_{k=n+1}^{\infty} \frac{\gamma_k}{S_{k-1}} + 2 \frac{\gamma_n}{S_{n-1}} \phi(n) \right\}
\]

(13)
where we use the concavity of ϕ in the last inequality.
Now
$$\sum_{k=n+1}^{\infty} \frac{\gamma_k}{S_k^2} = \sum_{k=n+1}^{\infty} \frac{\Delta_k}{S_k^2} = \sum_{k=n+1}^{\infty} \frac{S_k - S_{k-1}}{S_k^2} \leq \frac{1}{S_n},$$
so that inequality (13) implies the result.

3.3. Proof of Lemma 7. Note that
$$\wedge_n - \wedge_m = \sum_{k=m+1}^{n} S_{k-1} f(X_{k-1}) \frac{\gamma_k}{S_{k-1}} (\eta_{A,k} - \eta_{B,k} - (\theta_A - \theta_B))
\quad = \sum_{k=m+1}^{n} S_{k-1} f(X_{k-1}) (\Psi_{k-1} - \Psi_k)
\quad = \sum_{k=m+1}^{n} \Psi_k (S_k f(X_k) - S_{k-1} f(X_{k-1})) + \Psi_m S_m f(X_m) - \Psi_n S_n f(X_n)$$
(14)

Recall that $(S_k f(X_k))_{k \in \mathbb{N}}$ is a nondecreasing sequence (see last paragraph before the statements of Lemmas 6 and 7), so that (14) implies, together with Lemma 6, that, for all $n \geq m \geq k_0$,
$$|\wedge_n - \wedge_m| \leq R'_m \left[\sum_{k=m+1}^{n} \frac{S_k f(X_k) - S_{k-1} f(X_{k-1})}{S_k} + f(X_m) + f(X_n) \right]
\quad = R'_m \left[\sum_{k=m+1}^{n} [f(X_k) - f(X_{k-1}) + \gamma_k f(X_{k-1})] + f(X_m) + f(X_n) \right]
\quad = R'_m \left[\sum_{k=m+1}^{n} \gamma_k f(X_{k-1}) + 2f(X_n) \right].$$

4. Proof of Theorem 3.

4.1. Brake phenomenon bound: proof of Proposition 8. Assume that (S) and (E2) hold. Let
$$\mathcal{A} := \left\{ \limsup_{n \to \infty} \frac{Y_n^B}{\log S_n^B} < \infty \right\} \cap \left\{ \lim_{n \to \infty} X_n = 0 \right\}.$$

In order to prove Proposition 8, i.e. that $\mathbb{P}(\mathcal{A}) = 0$, we first upper bound S_n^B in Lemma 11. Then we show that $Y_n^B \to \infty$ a.s. on \mathcal{A} in Lemma 12 so that, for every $\lambda > 0$, $X_n > \lambda/S_n^B$ for large $n \in \mathbb{N}$. Both Lemmas are shown in Section 4.1.1; we finally conclude in Section 4.1.2 that \mathcal{A} almost surely does not occur.

Lemma 11 Under assumptions (S)-(E2), there exists $L > 0$ such that, for all $n \in \mathbb{N}$, $S_n^B \leq L e^{\theta_B \Gamma_n}$ a.s.

PROOF: Recall that (S) implies $\sum \gamma_n^2 < \infty$ (see Preliminary Remark 1 or Lemma 1), so that there exists $K > 0$ such that, for all $n \in \mathbb{N}$,

\[S_n^B \leq K \exp \left(\sum_{k=1}^{n} \gamma_k \mathbb{1}_{\{I_k > X_k, \eta_{B,k} = 1\}} \right) \text{ a.s.} \]

Now observe that

\[\sum_{k=1}^{n} \gamma_k \mathbb{1}_{\{I_k > X_k, \eta_{B,k} = 1\}} = \theta_B \Gamma_n + \sum_{k=1}^{n} \gamma_k (\eta_{B,k} - \theta_B) - \sum_{k=1}^{n} \gamma_k \eta_{B,k} \mathbb{1}_{\{I_k \leq X_k\}} \]

(15)

which enables us to conclude since $\Phi_{B,n,\gamma}$ converges to a finite value by Lemma 10. \hfill \Box

Lemma 12 Under assumptions (S)-(E2), $A \subseteq \{ \limsup_{n \to \infty} Y_n^B = \infty \}$ \mathbb{P}_x-a.s.

PROOF: There exist $L, L' > 0$ such that, for all $n \in \mathbb{N}$,

\[\frac{\gamma_{n+1} S_n}{\Gamma_{n+1}} \leq \frac{\gamma_n S_n}{\Gamma_n} \leq L' e^{-\theta_B \Gamma_n} S_n^B \leq LL', \]

(16)

where we use (S2) in the first inequality and Lemma 11 in the last one.
Now
\[
\left\{ \limsup_{n \to \infty} Y^B_n = \infty \right\} = \left\{ \sum_{k=1}^{\infty} (Y^B_{k+1} - Y^B_k) = \infty \right\}
\supseteq \left\{ \sum_{k=1}^{\infty} \frac{Y^B_{k+1} - Y^B_k}{\Gamma_k} = \infty \right\}
= \left\{ \sum_{k=1}^{\infty} \frac{\Delta^B_{k+1}(1 - X_k)}{\Gamma_k} \mathbb{1}_{\{U_{k+1} = A\}} \eta_{A,k+1} = \infty \right\}
\supseteq \mathcal{A} \cap \left\{ \sum_{k=1}^{\infty} \frac{\gamma_k S^B_{k-1} X_{k-1}}{\Gamma_k} \eta_{A,k} = \infty \right\}
= \mathcal{A} \cap \left\{ \sum_{k=1}^{\infty} \frac{\gamma_k S^B_{k-1} X_{k-1}}{\Gamma_k} \eta_{A,k} = \infty \right\}
\supseteq \mathcal{A} \cap \left\{ \sum_{k=1}^{\infty} \frac{\gamma_k}{\Gamma_k} \eta_{A,k} = \infty \right\}.
\]

We use \(X_n \xrightarrow{n \to \infty} 0\) a.s. on \(\mathcal{A}\) (and \(\gamma_n \to 0\)) in the second inclusion, whereas we apply conditional Borel-Cantelli lemma (see for instance [2], Theorem 2.7.33) in the third equality, which claims, given a filtration \(\mathcal{F} = (\mathcal{F}_n)_{n \in \mathbb{N}}\) and an \(\mathcal{F}\)-adapted bounded real sequence \((\xi_n)_{n \geq 0}\) (i.e. \(\exists M > 0\) s.t. \(\xi_n \leq M\) a.s.), that
\[
\left\{ \sum_{n \in \mathbb{N}} \xi_n = \infty \right\} = \left\{ \sum_{n \in \mathbb{N}} \mathbb{E}(\xi_n \mid \mathcal{F}_{n-1}) = \infty \right\}.
\]
Here \(\xi_n := \frac{\gamma_n S^B_{n-1}}{\Gamma_n} \mathbb{1}_{\{U_n = A\}} \eta_{A,n}/\Gamma_n\) is bounded, using (16). The last inclusion makes use of \(S^B_n X_n \geq x\) for all \(n \in \mathbb{N}\).

Now \(\sum \frac{\gamma_k \eta_{A,k}}{\Gamma_k} = \infty\) a.s. on \(\mathcal{A}\), since on one hand
\[
\sum_{k=1}^{\infty} \frac{\gamma_k}{\Gamma_k} \geq \frac{\sum_{k=1}^{\infty} \Gamma_{k+1} - \Gamma_k}{\Gamma_k} \geq \int_{\Gamma_1}^{\infty} \frac{dx}{x}
\]
and, on the other hand,
\[
\Phi_{n,\gamma/\Gamma}^A := \sum_{k=1}^{n} \frac{\gamma_k}{\Gamma_k} (\eta_{A,k} - \theta_A)
\]
converges (deterministically) to a finite value by Lemma 10.
\[\Box\]
4.1.2. Proof of Proposition 8. We assume that on the contrary $\mathbb{P}(A) > 0$, and reach a contradiction by proving that $\limsup_{n \to \infty} Y_n^B / \log(S_n^B) = \infty$ a.s. on A. Note that

$$Y_n^B := \sum_{k=0}^{n-1} \Delta_{k+1}^B \mathbb{I}_{\{I_{k+1} \leq X_k\}} \eta_{A,k+1}(1 - X_k) + x$$

and let, for all $\lambda > 0$,

$$Z_n^{B,\lambda} := \sum_{k=0}^{n-1} \gamma_{k+1} S_k^B \mathbb{I}_{\{I_{k+1} \leq \lambda/S_k^B\}} \eta_{A,k+1},$$

$$\tilde{Z}_n^{B,\lambda} := \sum_{k=0}^{n-1} \gamma_{k+1} S_k^B \min\left(1, \frac{\lambda}{S_k^B}\right) \eta_{A,k+1}.$$

Almost surely on A, $\limsup_{n \to \infty} Y_n^B = \infty$ by Lemma 12, and $\lim_{n \to \infty} X_n = \lim_{n \to \infty} \gamma_n = 0$, so that

$$\limsup_{n \to \infty} \frac{Y_n^B}{\log(S_n^B)} \geq \limsup_{n \to \infty} \frac{Z_n^{B,\lambda}}{\log(S_n^B)} \text{ a.s.}$$

To show that the right-hand side of this last inequality is infinite a.s. on A, we aim to estimate $\mathbb{E}(Z_n^{B,\lambda}) = \mathbb{E}(\tilde{Z}_n^{B,\lambda})$ and to upper bound $\mathbb{E}((Z_n^{B,\lambda} - \tilde{Z}_n^{B,\lambda})^2)$. In order to yield the latter we first observe that there exists $M > 0$ such that, for all $k \in \mathbb{N}$, $\gamma_{k+1} S_k^B \leq \Delta_k^B \leq M \Gamma_k$, by inequality (16).

Now

$$\mathbb{E}((Z_n^{B,\lambda} - \tilde{Z}_n^{B,\lambda})^2)$$

$$= \mathbb{E} \left(\sum_{k=0}^{n-1} (\gamma_{k+1} S_k^B)^2 \min\left(1, \frac{\lambda}{S_k^B}\right) \left(1 - \min\left(1, \frac{\lambda}{S_k^B}\right) \right) \eta_{A,k+1}^2 \right)$$

$$\leq M \Gamma_n \mathbb{E} \left(\sum_{k=0}^{n-1} \gamma_{k+1} S_k^B \min\left(1, \frac{\lambda}{S_k^B}\right) \eta_{A,k+1} \right) = M \Gamma_n \mathbb{E}(Z_n^{B,\lambda}). \quad (17)$$

On the other hand, for all $M > 0$ and $\varepsilon > 0$,

$$\mathbb{E}(Z_n^{B,\lambda}) = \mathbb{E} \left(\sum_{k=0}^{n-1} \gamma_{k+1} S_k^B \min\left(1, \frac{\lambda}{S_k^B}\right) \eta_{A,k+1} \right)$$

$$\geq \lambda(1 - \varepsilon) \mathbb{P}(A) \sum_{k=k_0(\varepsilon,\lambda)}^{n-1} \gamma_{k+1}\eta_{A,k+1},$$
where we use that $S_B^n = Y_B^n/X_n \to \infty$ a.s. on \mathcal{A}, $k_0(\varepsilon, \lambda)$ being a constant depending on ε and λ. Now $\Phi_{n, \gamma}^A = \sum_{k=0}^{n-1} \gamma_{k+1} \eta_{A, k+1} - \Gamma_n \theta_A$ converges by Lemma 10, so that we obtain

$$\lambda \theta_A \geq \limsup_{n \to \infty} \frac{E(Z_n^{B, \lambda})}{\Gamma_n} \geq \liminf_{n \to \infty} \frac{E(Z_n^{B, \lambda})}{\Gamma_n} \geq \lambda P(A) \theta_A.$$

Fix $\rho \in (0, 1)$, and let

$$B_{n, \lambda} := \{|Z_n^{B, \lambda} - \tilde{Z}_n^{B, \lambda}| \leq \rho E(Z_n^{B, \lambda})\}.$$

By (17) and Chebychev’s inequality,

$$P(B_{n, \lambda}) \leq \frac{M \Gamma_n}{\rho^2 E(Z_n^{B, \lambda})}.$$

Therefore, for all $\lambda > 0$, if we let $C_{\lambda} := A \cap \limsup_{n \to \infty} B_{n, \lambda}$,

$$P(C_{\lambda}) \geq \limsup_{n \to \infty} P(A \cap B_{n, \lambda}) \geq P(A) - \frac{M}{\lambda \rho^2 \theta_A P(A)} > 0,$$

if we choose λ such that $\lambda > \frac{M \theta_A^{-1}(\rho P(A))^{-2}}{2}$.

Now, almost surely on $C_{\lambda} \subseteq \mathcal{A}$, $\tilde{Z}_n^{B, \lambda}/\Gamma_n \to \lambda \theta_A$ (since $S_B^n \to \infty$, see above), so that

$$\limsup_{n \to \infty} \frac{Y_n^B}{\log S_n^B} \geq \frac{\lambda(1 - \rho P(A)) \theta_A}{\theta_B},$$

using that $\limsup_{n \to \infty} \log S_n^B/\Gamma_n \leq \theta_B$ by Lemma 11.

Therefore

$$P\left(\left\{\limsup_{n \to \infty} \frac{Y_n^B}{\log S_n^B} = \infty\right\} \cap A\right) \geq P\left(\limsup_{\lambda \in \mathbb{N}, \lambda \to \infty} C_{\lambda}\right) \geq \limsup_{\lambda \in \mathbb{N}, \lambda \to \infty} P(C_{\lambda}) \geq P(A),$$

which enables us to conclude.

4.2. Conclusion of the proof of Theorem 3. Let, for all $n \geq 0$, $T_n^B := e^{\theta_B \Gamma_n}$. It follows from Proposition 8 that

$$\limsup_{n \to \infty} \frac{X_n}{\log T_n^B / T_n^B} = \infty \quad \text{a.s on } X_\infty = 0$$

using that $\limsup_{n \to \infty} S_n^B/T_n^B < \infty$ by Lemma 11.
Given \(l \in \mathbb{N} \), let us estimate \(\mathbb{P}(X_{\infty} = 0|\mathcal{F}_l) \). Using identity (6) and the assumption \(\theta_A > \theta_B \), there exists \(n_0 \in \mathbb{N} \) deterministic such that, for all \(n \geq m \geq n_0 \),

\[
X_n - X_m = M_n - M_m + (\theta_A - \theta_B + \Box(R'_m)) \sum_{k=m+1}^{n} \gamma_k f(X_k) + 2\Box(R'_m) f(X_n)
\]

\[
\geq M_n - M_m - X_n,
\]

so that

\[
(18) \quad 2X_n \geq X_m + M_n - M_m.
\]

Let \((N_n)_{n \geq m} \) be the \((\mathcal{F}_n)_{n \geq m}\) adapted martingale given by

\[
N_n := \sum_{i=l+1}^{n} \gamma_i 1_{\{X_{i-1} \leq X_l\}} \varepsilon_{i}, \quad N_l := 0;
\]

recall that \((\varepsilon_i)_{i \in \mathbb{N}}\) was defined before the statement of Proposition 5.

Let \(n_0 \) be sufficiently large, so that \(\gamma_{n_0} \leq 1/2 \); then, for all \(n \geq n_0 \),

\[
X_{n+1} > X_n/2.
\]

Thus, for all \(n \geq l \geq n_0 \), inequality (18) implies

\[
(19) \quad 2X_n \geq X_m + N_n - N_m \geq X_l/2 + N_n - N_m,
\]

where \(m := \max\{l \leq i \leq n : X_i > X_l/2\} \); indeed, if \(n < m \) then, for all \(n \leq k \leq n - 1, X_{k+1} \leq X_k \leq X_l \), hence \(X_k \leq X_l \), and (19) trivially holds in the case \(n = m \). Hence if \(x^- := \max(-x,0) \) denotes the negative part of \(x \), then

\[
(2X_{\infty} - X_l/2)^- \leq \sup_{m,n \geq l} |N_n - N_m| \leq 2 \sup_{n \geq l} |N_n - N_l|.
\]

Therefore, by Chebychev’s inequality

\[
\mathbb{P}(X_{\infty} = 0|\mathcal{F}_l) \leq \frac{4\mathbb{E}[\{(2X_{\infty} - X_l/2)^-\}^2|\mathcal{F}_l]}{X_l^2} \leq \frac{16 \mathbb{E}[\sup_{n \geq l} (N_n - N_l)^2|\mathcal{F}_l]}{X_l^2}.
\]

Now observe that, for all \(k \in \mathbb{N} \), \(\mathbb{E}((\varepsilon_{k+1}^2|\mathcal{F}_k) \leq f(X_k) \leq X_k \), so that Doob’s inequality implies

\[
\mathbb{E}\left[\sup_{n \geq l} (N_n - N_l)^2|\mathcal{F}_l\right] \leq 4\mathbb{E}\left[\sum_{n=l+1}^{\infty} \gamma_n^2 1_{\{X_{n-1} \leq X_l\}} f(X_{n-1})\right] \leq 4X_l \sum_{n=l+1}^{\infty} \gamma_n^2.
\]
Let us upper bound \(\sum_{i=n+1}^{\infty} \gamma_i^2 \) in terms of \(T_n \). For sufficiently large \(k \in \mathbb{N} \),

\[
T_{k+1}^B - T_k^B = e^{\theta_B \Gamma_{k+1}} (1 - e^{-\theta_B \gamma_{k+1}}) \geq \frac{T_{k+1}^B \theta_B \gamma_{k+1}}{2}
\]

and, on the other hand, by assumption \((S)\),

\[
\gamma_k \leq C \Gamma_k e^{-\theta_B \Gamma_k} = \frac{C \log(T_k^B)}{\theta_B T_k^B}.
\]

Hence, if \(l \in \mathbb{N} \) was assumed sufficiently large,

\[
\sum_{n=l+1}^{\infty} \gamma_n^2 \leq C \sum_{n=l+1}^{\infty} (T_n^B - T_{n-1}^B) \log T_n^B \frac{1}{T_n^B} \leq C \int_t^\infty \frac{\log t}{t^2} dt \leq C \log T_l^B \frac{1}{T_l^B}.
\]

In summary, it follows from identities (20)–(22) that

\[
\mathbb{P}(X_\infty = 0 | \mathcal{F}_l) \leq \frac{C \log T_l^B}{X_l T_l^B}.
\]

Now the bounded martingale \(\mathbb{P}(X_\infty = 0 | \mathcal{F}_l) \) converges, as \(l \) goes to infinity, to

\[
\mathbb{I}_{\{X_\infty = 0\}} \leq C \lim_{l \to \infty} \frac{\log T_l^B}{X_l T_l^B} = 0 \text{ a.s.}
\]

so that \(\mathbb{P}(X_\infty = 0) = 0 \).

Acknowledgments. We are grateful to the referee for very helpful comments.

References.

University of Oxford, Mathematical Institute,
24-29 St Giles, Oxford OX1 3LB, United Kingdom.

Université Paris-Est Marne-la-Vallée, LAMA,
5 boulevard Descartes,
Champs-sur-Marne,
77454 Marne-la-Vallée Cedex 2,
France.

E-mail: tarres@maths.ox.ac.uk; pierre.vandek@univ-mlv.fr