
Summary for Vector Calculus and Complex Calculus
(Math 321)
By Lei Li

1 Vector Calculus

1.1 Parametrization

Curves, surfaces, or volumes can be parametrized. Below, I’ll talk about
3D case.
Suppose we use ~ex, ~ey, ~ez as the basis and then the position vector for any
point on the curve (surface, volume) can be written as:

~r = x~ex + y~ey + z~ez

To parametrize, we need to write x, y, z as functions of our parameters. You
need to choose the parameters wisely so that our problem would be easy to
solve.

Something you must know:

1. For curve, the degree of freedom is one and thus you should only have
ONE parameter in your parametrization

2. You should have 2 independent parameters for surface

3. 3 independent parameters for volume

Example:

• For the circle (x − a)2 + (y − b)2 = r2, we can use the angle and
x = a+ r cos θ, y = b+ r sin θ and then your parametrization would be
~r(θ) = (a+ r cos θ)~ex + (b+ r sin θ)~ey

• For the function graph y = f(x), x itself is a convenient parameter.

• for the region 0 ≤ x, y ≤ a, z = b, x, y would be good parameters.

Two important parametrization would be to use the spherical
coordinates and cylindrical coordinates. Hope you know the mean-
ings the parameters. To get the Cartesian equation from the parametriza-
tion, you just need to eliminate the parameters.

Example: x = a tan θ, y = b sec θ. What is ~r? What is the Cartesian
equation?
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1.2 Curves and line integrals

Suppose you get the parametrization already (given or obtained by y-
ourself) ~r(t):

d~r =
d~r

dt
dt = ~r′(t)dt

Sometimes, we are given by functions like ~r(t) = ~r(θ(t)) or ~r(t) = ~r(u(t), v(t)).
It’s easy to get the following by chain rule:

~r′(t) =
d~r

dθ
θ′(t)

~r′(t) =
∂~r

∂u
u′(t) +

∂~r

∂v
v′(t)

Having obtained d~r, everything would be just easy:

• Arclentgh:

L =

∫ t2

t1

|~r′(t)|dt

You should know how to parametrize the curve using arclength param-
eter.

• Area enclosed by the initial vector, end vector and the curve:

A =

∫
|~r × d~r|

• Work

W =

∫
~F · d~r

Example: Along the curve y = sinx, 0 ≤ x ≤ π, if the force is ~F = F0~r
′.

Calculate the work done by this force if the particle moves from the origin
to (π, 0).
Example: #6 in this section

1.3 surface and surface integrals

We have the parametrization ~r(u, v) = x(u, v)~ex + y(u, v)~ey + z(u, v)~ez.
Example: For the sphere: ~r(θ, φ) = r sin θ cosφ~ex + r sin θ sinφ~ey + r cos θ~ez
For the torus ~r = . . .
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1.3.1 Coordinate curves, tangent vectors(coordinate vectors)

You should know the definition of them and use them to determine if
the given coordinates are orthogonal coordinates.

Example: If we parametrize z = h(x, y) using x, y when would they be
orthogonal parameters?

1.3.2 Surface element

d~S = ~Ndudv, ~N = ~ru × ~rv
~N is the normal. Do not just memorize them. You should understand why
surface element looks like this.

Sometimes we are interested in dS = |d~S|.
Example: Calculate the area of the torus with outer radius 4 and inner

radius 1.
As long as you get the surface element, everything would be nice.

• Flux ∫
S

~v · d~S =

∫
A

~v · (~ru × ~rv)dudv

• Pressure force: ∫
S

p(~r)d~S

Example: All the problems in section 1.4.

1.4 Volumes and volume integrals

Parametrization ~r(u, v, w) = x(u, v, w)~ex + y(u, v, w)~ey + z(u, v, w)~ez.
Example: Parametrize the ball x2 + y2 + z2 ≤ 4, the cylinder x2 + y2 ≤

1, 0 ≤ z ≤ 3 and the solid inside the torus with outer radius 4, inner radius
2. Parametrize the cube 0 ≤ x, y, z ≤ 1 and the solid bounded by xy, yz xz
x = 2, y = 3 planes and the surface z = 10x2 + 30(y + 2)
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1.4.1 Coordinate curves, coordinate surfaces and coordinate vec-
tors

Suppose we have ~r(u, v, w) = x(u, v, w)~ex + y(u, v, w)~ey + z(u, v, w)~ez.
What are the coordinate curves and coordinate surfaces? Calculate the co-
ordinate vectors.

1.4.2 Line elements, Surface elements

Given ~r(u, v, w). What are the line elements for the coordinate curves?
What is the general line element? What are the surface elements for the
coordinate surfaces?

1.4.3 Volume element

dV = (~ru × ~rv) · ~rwdudvdw

In the three cases below find suitable ~r and then calculate the total mass
inside the volume:
The density of a kind of material is 2(H−h)2. h is the height from the lowest
point of that volume and H is the largest height.

• The ball x2 + y2 + z2 ≤ 1

• The cylinder x2 + y2 = 1, 0 ≤ z ≤ 1

• The cube 0 ≤ x, y, z ≤ 1

• The solid in the first octant and bounded by x = 1, y = 1 and z = x2y2

1.4.4 Orthogonal coordinates and scale factors

We can always write the coordinate vectors as its magnitude times the
direction.

hi = |∂~r/∂qi|, q̂i =
1

hi

∂~r

∂qi

If the parameters are orthogonal, then q̂i · q̂j = δij. If they satisfy right-
handed rule furthermore, then we get a new basis. The surface element and
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volume element in such cases are quite easy:

d~S3 = q̂3h1h2dq1dq2

dV = h1h2h3dq1dq2dq3

Example: Calculate ~er, ~eθ, ~eϕ for spherical coordinates. (They are important
when we derive the gradient, divergence, etc under spherical coordinates)

1.5 Change of variables for integration

Just remember one thing: Jacobian!
Example: Calculate the Jacobian if we change from 2D Cartesian coor-

dinates to polar coordinates. Use this to evaluate
∫ +∞
−∞ e−x

2
dx

1.6 ∇ operator, gradient, curl, divergence

1.6.1 In Cartesian coordinate

• f(x, y, z) is a given nice scalar function. ∇f is called the gradient of
function f , which points to the direction of fastest increasing and its
magnitude equals the rate of change with respect to the distance going
from one point. According to this meaning:

df = d~r · ∇f

Your task: Using the Cartesian form of d~r = . . . to get:

∇f =
∂f

∂x
~ex +

∂f

∂y
~ey +

∂f

∂z
~ez

According to its geometric meaning and this expression, it’s quite nat-
ural to get the direction derivative:

∂f

∂n
= n̂ · ∇f

• It’s convenient to define a vector operator now:

∇ = ~ex
∂

∂x
+ ~ey

∂

∂y
+ ~ez

∂

∂z
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• Given a vector field ~v = v1~e1 + v2~e2 + v3~e3 (here, they just mean the
~ex, ~ey etc), define the divergence of ~v to be ∇ · ~v. One can easily get:

∇ · ~v = ∂1v1 + ∂2v2 + ∂3v3

• Define the curl to be ∇× ~v and one can easily get:

∇× ~v =

∣∣∣∣∣∣
~ex ~ey ~ez
∂1 ∂2 ∂3
v1 v2 v3

∣∣∣∣∣∣
• The Laplacian of f is defined to be ∆f = ∇ · ∇f . In Cartesian form:

∆f = ∂xxf + ∂yyf + ∂zzf

If ∆f = 0, we call f a harmonic function.

1.6.2 identities

You should know how to prove them

• ∇ · (∇× ~v) = 0

• ∇ × (∇f) = 0

• ∇ · (f~v) = ∇f · ~v + f∇ · ~v

• ∇ × (f~v) = ∇f × ~v + f∇× ~v

• ∇ × (∇× ~v) = ∇(∇ · ~v)−∆~v

1.6.3 Spherical coordinates

In spherical coordinates, it’s useful to use the basis ~er, ~eθ, ~eϕ. Recall the
definition of ~eθ for example. ~r = r sin θ cosϕ~ex + r sin θ sinϕ~ey + r cos θ~ez.
~eθ = 1

|~rθ|
~rθ etc. You should know how to derive ∇ operator under spherical

coordinates. Given f(r, θ, ϕ)

df =
∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂ϕ
dϕ = d~r · ∇f

d~r = ~rrdr + ~rθdθ + ~rϕdϕ
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You just assume that ∇f = u~er + v~eθ + w~eϕ because it’s a vector and then
you’ll get:

∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂ϕ
dϕ = |~rr|udr + |~rθ|vdθ + |~rϕ|wdϕ

Then you’ll have

u =
∂f/∂r

hr
=
∂f

∂r

v =
∂f/∂θ

hθ
=

1

r

∂f

∂θ

w =
∂f/∂ϕ

hϕ
=

1

r sin θ

∂f

∂ϕ

which gives the following important formula:

∇ = ~er
∂

∂r
+ ~eθ

1

r

∂

∂θ
+ ~eϕ

1

r sin θ

∂

∂ϕ

Using the definition of divergence, gradient, curl, Laplacian etc, one can get
the expressions for them under spherical coordinates. I won’t list them here
(You can find them online.). However, you should understand how to derive
them even though you don’t have to memorize them.

Example: In ∇ · ~v, we would have the term (~eθ
1
r
∂
∂θ

) · (u~er) which is
nonzero. Please calculate this term out.

Other coordinates

Please derive∇ operator using cylindrical coordinates and compare your
results with those on Wikipedia.

1.7 Fundamental theorems for vector calculus

• Green’s Theorem∮
C

(Fdx+Gdy) =

∫
A

(
∂G

∂x
− ∂F

∂y
)dxdy

LHS can be also written as
∮
C
~v · d~r if we define ~v = F~ex +G~ey
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One can check that the above formula is nothing but a special case of
Stokes’ theorem if the surface is restricted in the x-y plane. The curl
form of Green’s Theorem:∮

C

~v · d~r =

∫
A

∇× ~v · ~ezdA

is just exactly the same formula as above.

Furthermore, if we define ~n as the unit normal vector with the suitable
direction, we can write the left hand side as

∮
C

(G~ex − F~ey) · ~ndr, and
thus we have

∮
C

(G~ex − F~ey) · ~ndr =
∫
A

(∂G
∂x
− ∂F

∂y
)dxdy. Change the

notations and we can have∮
C

(F~ex +G~ey) · ~ndr =

∫
A

(
∂F

∂x
+
∂G

∂y
)dxdy

∮
C

~v · ~ndr =

∫
A

∇ · ~vdA

This is an analogy of Gauss’ Theorem in 2D and it’s called the diver-
gence form of Green’s Theorem

• Stokes’ Theorem ∫
S

∇× ~v · d~S =

∮
C

~v · d~r

Here S is any surface in space with boundary C and C is a closed curve
in space.

Example: If S is a closed surface, C would be empty. What would the
right hand side be? Use Gauss’ Theorem to justify this.

• Gauss’ Theorem ∮
S

~v · d~S =

∮
S

~v · ~ndS =

∫
V

∇ · ~vdV

Here, S is a closed surface (no boundary) and V is the volume enclosed
by it (this means the boundary of V is C but C has no boundary).

Example: Show that
∮
C
∇× f · d~r = 0 if C is closed in space and f is a

good function.
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2 Complex Calculus

2.1 Some basic knowledge

• Complex conjugate etc. (ez)∗ = e(z
∗). Generally, if f is analytical and

takes real values on x-axis then, (f(z))∗ = f(z∗).

• |z1z2| = |z1||z2|, ||z1| − |z2|| ≤ |z1 ± z2| ≤ |z1| + |z2| etc. Using the
first identity, we actually can get some useful expressions: (ac− bd)2 +
(ad+ bc)2 = (a2 + b2)(c2 + d2) etc. For the second one, we can see that
R2 − |b| ≤ |R2e2iθ − b| ≤ R2 + |b| when R→∞

• Geometic series
N∑
n=0

a1q
n =

a1(1− qN+1)

1− q

and if |q| < 1, we have

∞∑
n=0

a1q
n =

a1
1− q

Example: Calculate
N∑
n=0

cos(nθ) and
N∑
n=0

sin(nθ) at the same time.

• Polar form of a complex number and calculate its complex roots.
z = reiθ. You can get r by taking its magnitude and θ by plotting it
in the complex plane. To calculate the complex roots, you can just use
this polar form. There are exercises in the last homework.

• Euler’s identity eiz = cos(z) + i sin(z)

• How to calculate ln(z), sin(z), cos(z) etc

2.2 Complex power series

If a series
∞∑
n=0

cn(z− a)n has a convergence bigger than zero then f(z) =

∞∑
n=0

cn(z − a)n is analytical and its Taylor series is exactly this series. You

should know how to apply Ratio Test etc to calculate the radius of conver-
gence.
You should be able to write out the Taylor series of ez, sin z, cos z, 1

1−z
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2.3 Cauchy-Riemann equations

We can regard any function of x, y as a function of z, f(z). We say
it’s analytical if f ′(z) exists in a domain we are interested in. We know
it’s analytical if it is the sum of a power series. However, we have a more
fundamental criterion–Cauchy-Riemann equations.
A function f(z) = u(x, y) + iv(x, y) is analytical if and only if

∂u

∂x
=

∂v

∂y
∂u

∂y
= −∂v

∂x

One amazing fact is that both u and v should be harmonic! There are
problems in the last homework.

2.4 Complex Integrals

Understand the definition. You should know how to use parametriza-
tion to calculate some simple complex integrals. Example: How to prove∫
|z|=1

1
z
dz = 2πi? How to calculate

∫
|z|=2

z∗dz?

2.4.1 Cauchy’s Theorem

If a function f(z) is analytical inside a closed curve C and on C( Actually,
we only need it to be continuous on C), we then have:∮

C

f(z)dz = 0

One important corollary of this theorem is∮
C

(z − a)ndz =

{
2πi n = −1 and C encloses a
0 otherwise

2.4.2 Cauchy’s formula

If f(z) is analytical inside and on C, then:∮
C

f(z)

(z − a)n
dz =

2πif (n)(a)

n!
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if a is inside C and 0 otherwise.
This means that we can determine everything about f(z) inside C only

using values on C if f(z) is analytical. This is not quite amazing since the
real and imaginary parts are harmonic.

2.4.3 Applications

Use Cauchy’s formula and Cauchy’s theorem to calculate some real in-
tegrals.

Example:
∫∞
−∞

1
x4+1

dx
∫∞
0

cos(x2)dx etc.
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