Summary for Vector Calculus and Complex Calculus

(Math 321)
By Lei Li

1 Vector Calculus

1.1 Parametrization

Curves, surfaces, or volumes can be parametrized. Below, I'll talk about
3D case.
Suppose we use €, €y, €, as the basis and then the position vector for any
point on the curve (surface, volume) can be written as:

7= x€ + Yéy, + 2€,

To parametrize, we need to write z,y, z as functions of our parameters. You
need to choose the parameters wisely so that our problem would be easy to
solve.

Something you must know:

1. For curve, the degree of freedom is one and thus you should only have
ONE parameter in your parametrization

2. You should have 2 independent parameters for surface

3. 3 independent parameters for volume
Example:

e For the circle (x — a)*> + (y — b)? = r?, we can use the angle and
x=a-+rcosf,y=>b+rsinf and then your parametrization would be
7(0) = (a + rcosB)e, + (b+ rsinb)e,

e For the function graph y = f(z), x itself is a convenient parameter.

e for the region 0 < z,y < a,z = b, x,y would be good parameters.

Two important parametrization would be to use the spherical
coordinates and cylindrical coordinates. Hope you know the mean-
ings the parameters. To get the Cartesian equation from the parametriza-
tion, you just need to eliminate the parameters.

Example: ©* = atanf,y = bsecd. What is 77 What is the Cartesian
equation?



1.2 Curves and line integrals

Suppose you get the parametrization already (given or obtained by y-
ourself) 7(t):
dr -
dr' = —dt = r'(t)dt
Sometimes, we are given by functions like 7(t) = 7(0(t)) or 7(t) = 7(u(t), v(t)).
It’s easy to get the following by chain rule:

— _ dr’ /
) = S

or or
— _ Yt A

Having obtained dr, everything would be just easy:

to
L:/|MMﬁ

t1

e Arclentgh:

You should know how to parametrize the curve using arclength param-
eter.

e Area enclosed by the initial vector, end vector and the curve:

A:/|F><df1

Wz/ﬁdf

Example: Along the curve y = sinx,0 < x < 7, if the force is F= .
Calculate the work done by this force if the particle moves from the origin
to (m,0).

Example: #6 in this section

e Work

1.3 surface and surface integrals

We have the parametrization 7(u,v) = z(u,v)e, + y(u,v)e, + z(u, v)e..
Example: For the sphere: (6, ¢) = rsin @ cos ¢e, + rsin @ sin ¢e, + r cos 0¢€,
For the torus 7= ...



1.3.1 Coordinate curves, tangent vectors(coordinate vectors)

You should know the definition of them and use them to determine if
the given coordinates are orthogonal coordinates.

Example: If we parametrize z = h(z,y) using x,y when would they be
orthogonal parameters?

1.3.2 Surface element

dS = Ndudv, N =7, xTF,

N is the normal. Do not just memorize them. You should understand why
surface element looks like this.

Sometimes we are interested in dS = |dS].

Example: Calculate the area of the torus with outer radius 4 and inner

radius 1.
As long as you get the surface element, everything would be nice.

/ﬁ-dgz/ﬁ-(fuva)dudv
S A

/S p(F)ds

e Flux

e Pressure force:

Example: All the problems in section 1.4.

1.4 Volumes and volume integrals

Parametrization 7(u, v, w) = z(u, v, w)e,; + y(u, v, w)e, + z(u, v, w)e;.

Example: Parametrize the ball 22 + y? + 22 < 4, the cylinder 22 + y? <
1,0 < z < 3 and the solid inside the torus with outer radius 4, inner radius
2. Parametrize the cube 0 < z,y, 2 < 1 and the solid bounded by zy, yz zz
r =2, y = 3 planes and the surface z = 10z + 30(y + 2)



1.4.1 Coordinate curves, coordinate surfaces and coordinate vec-
tors

Suppose we have 7(u, v, w) = x(u, v, w)e, + y(u, v, W)€, + z(u, v, w)e,.
What are the coordinate curves and coordinate surfaces? Calculate the co-
ordinate vectors.

1.4.2 Line elements, Surface elements

Given 7(u, v, w). What are the line elements for the coordinate curves?
What is the general line element? What are the surface elements for the
coordinate surfaces?

1.4.3 Volume element

dV = (7 X 7)) - Twdudvdw

In the three cases below find suitable 7 and then calculate the total mass
inside the volume:

The density of a kind of material is 2(H —h)?. h is the height from the lowest
point of that volume and H is the largest height.

e The ball 22 + 92 + 22 <1
e The cylinder 22 +92=1,0<2< 1
e The cube 0 < z,y,2 <1

e The solid in the first octant and bounded by z = 1,y = 1 and z = 2%y

1.4.4 Orthogonal coordinates and scale factors

We can always write the coordinate vectors as its magnitude times the

direction. .
1 or

h_iaQi
If the parameters are orthogonal, then ¢; - ¢; = d;;. If they satisfy right-
handed rule furthermore, then we get a new basis. The surface element and

h; = |a77/8q1"7 ¢ =



volume element in such cases are quite easy:

dgs = @3hihedqidgs
dV = hihshsdgidgadgs

Example: Calculate €, €y, €, for spherical coordinates. (They are important
when we derive the gradient, divergence, etc under spherical coordinates)

1.5 Change of variables for integration

Just remember one thing: Jacobian!
Example: Calculate the Jacobian if we change from 2D Cartesian coor-
dinates to polar coordinates. Use this to evaluate fj;o e dx

1.6 V operator, gradient, curl, divergence
1.6.1 In Cartesian coordinate

e f(x,y,2) is a given nice scalar function. Vf is called the gradient of
function f, which points to the direction of fastest increasing and its
magnitude equals the rate of change with respect to the distance going
from one point. According to this meaning:

df =dr'-Vf
Your task: Using the Cartesian form of di' = ... to get:

0 0 0
Js +—f€y+—f€z

VIi=5:%T 5,51,

According to its geometric meaning and this expression, it’s quite nat-
ural to get the direction derivative:

of .

e [t’s convenient to define a vector operator now:

V-"ﬁ+"2+"g
~“or eyﬁy “5.



e Given a vector field ¥ = v1€] + v2€5 + v3€3 (here, they just mean the
€y, €y etc), define the divergence of ' to be V - ¢. One can easily get:

V.= 81?]1 + 821}2 + 63’03

e Define the curl to be V x ¢ and one can easily get:

& & &
V X U= 81 82 83
V1 V2 Vs

e The Laplacian of f is defined to be Af =V - Vf. In Cartesian form:
Af = a’rxf + ayyf +8zzf

If Af =0, we call f a harmonic function.

1.6.2 identities
You should know how to prove them
o V- (Vx1)=0
e Vx(Vf)=0
o V.- (ft)=Vf-0+fV-0U
e VX (fU)=V[fxi+ fVxu
e VX (Vx1)=V(V-7)— AV

1.6.3 Spherical coordinates

In spherical coordinates, it’s useful to use the basis €, €, €,. Recall the
definition of € for example. 7 = rsin6 cos pe, + rsinfsin pe, + rcosbe,.
€y = ﬁfg etc. You should know how to derive V operator under spherical
coordinates. Given f(r,0, )

df = %dr + %d@—l— %dgp —dr-Vf
dr = rpdr + 75d0 + 7,dp
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You just assume that Vf = ué, + véy + we, because it’s a vector and then
you'll get:
of of

——dr + —-df + 9f

B 50 agpdg@ = |77 |udr + |Tg|vdf + |7, |wdyp

Then you’ll have

of jor  Of
_Of/00  10f
YT The o0
0f/0¢ 1 of
w —

h ~ rsinf %
which gives the following important formula:

0 10 1 0

V= GTE * 69;% * ewrsiHQ%
Using the definition of divergence, gradient, curl, Laplacian etc, one can get
the expressions for them under spherical coordinates. I won’t list them here
(You can find them online.). However, you should understand how to derive
them even though you don’t have to memorize them.
Example: In V - ¥, we would have the term (€;2-2) - (ué,) which is
nonzero. Please calculate this term out.

Other coordinates

Please derive V operator using cylindrical coordinates and compare your
results with those on Wikipedia.

1.7 Fundamental theorems for vector calculus

e Green’s Theorem

oG OF
F — [ (=2
j{c( dx + Gdy) /A( or oy Ydxdy

LHS can be also written as 550 U - dr if we define v = Fé, + Ge,



One can check that the above formula is nothing but a special case of
Stokes’ theorem if the surface is restricted in the x-y plane. The curl
form of Green’s Theorem:

fﬁ-dF:/Vxﬁ-ész
c A

is just exactly the same formula as above.

Furthermore, if we define 77 as the unit normal vector with the suitable
direction, we can write the left hand side as §,(Ge, — Fé,) - fidr, and
thus we have §.(Ge, — Fé,) - iidr = [,(52 — %—g)dxdy. Change the
notations and we can have

oF 0G
F—» — .7 — il el
ji( é; + Géy) - ndr /A<8x + 3y Ydzdy

Y{U-ﬁdr:/v-ﬁd/l
c A

This is an analogy of Gauss’ Theorem in 2D and it’s called the diver-
gence form of Green’s Theorem

/vw-dﬁzfﬁ-df
S C

Here S is any surface in space with boundary C' and C'is a closed curve
in space.

e Stokes’ Theorem

Example: If S is a closed surface, C' would be empty. What would the
right hand side be? Use Gauss’ Theorem to justify this.

e Gauss’ Theorem

fﬁ-dngﬁ-ﬁdsz/v-ﬁdv
S S |4

Here, S is a closed surface (no boundary) and V' is the volume enclosed
by it (this means the boundary of V' is C' but C' has no boundary).

Example: Show that fc V x f-dr'=0if C is closed in space and f is a
good function.



2 Complex Calculus

2.1 Some basic knowledge

e Complex conjugate etc. (e*)* = e*). Generally, if f is analytical and
takes real values on z-axis then, (f(2))* = f(z*).

o |z:122] = |22, 2] = |22l < J21 £ 22 < [21] + [22] ete. Using the
first identity, we actually can get some useful expressions: (ac — bd)? +
(ad +bc)? = (a® +1?)(c® + d?) etc. For the second one, we can see that
R? — |b| < |R%**% — b| < R? + |b| when R — oo

e Geometic series

n a1l — gV )
Z " = 1 —
n=0 q
and if |¢| < 1, we have
1" =
n=0 1- q
N N
Example: Calculate ) cos(n#) and ) sin(nf) at the same time.
n=0 n=0

e Polar form of a complex number and calculate its complex roots.
2z = re”. You can get r by taking its magnitude and § by plotting it
in the complex plane. To calculate the complex roots, you can just use
this polar form. There are exercises in the last homework.

e Euler’s identity e”* = cos(z) + isin(z)

e How to calculate In(z), sin(z), cos(z) etc

2.2 Complex power series

If a series > ¢,(z —a)™ has a convergence bigger than zero then f(z) =

n=0
e

> ¢u(z — a)™ is analytical and its Taylor series is exactly this series. You
n=0
should know how to apply Ratio Test etc to calculate the radius of conver-

gence.
You should be able to write out the Taylor series of €7, sin z, cos z, ﬁ
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2.3 Cauchy-Riemann equations

We can regard any function of x,y as a function of z, f(z). We say
it’s analytical if f'(z) exists in a domain we are interested in. We know
it’s analytical if it is the sum of a power series. However, we have a more
fundamental criterion-Cauchy-Riemann equations.

A function f(z) = u(z,y) + iv(z,y) is analytical if and only if

ou v
ox Oy
ou v
oy  Ox

One amazing fact is that both v and v should be harmonic! There are
problems in the last homework.

2.4 Complex Integrals

Understand the definition. You should know how to use parametriza-
tion to calculate some simple complex integrals. Example: How to prove
Jiz1 34z = 2mi? How to calculate [ _, z*dz?

2.4.1 Cauchy’s Theorem

If a function f(z) is analytical inside a closed curve C and on C'( Actually,
we only need it to be continuous on C'), we then have:

éf(z)dz =0

One important corollary of this theorem is

]{(z —a)"dz = { 2t n = —1and C encloses a
c

0 otherwise

2.4.2 Cauchy’s formula
If f(z) is analytical inside and on C, then:

§ G,
. |
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if a is inside C' and 0 otherwise.

This means that we can determine everything about f(z) inside C' only
using values on C'if f(z) is analytical. This is not quite amazing since the
real and imaginary parts are harmonic.

2.4.3 Applications

Use Cauchy’s formula and Cauchy’s theorem to calculate some real in-
tegrals.
Example: [ ——dx [ cos(z?)dx etc.

—oo 441
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