Math 321 Exercise

Due: March 27/29

Your Section:

Let's look at the applications of surface integral in physics.

1. Consider a ball with radius r deep in the water. Suppose the center of the ball is l below the water level. Archimedes principle says that 'Any object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object'. Suppose the density of the water is ρ and we know the volume of the ball is $4 \pi r^{3} / 3$ (you can verify this using volume integral). Then, the buoyancy should be $\frac{4}{3} \pi r^{3} \rho g$ and point up. If we create coordinate system at the water level surface, and make z axis point downward, then we would have $\vec{F}_{b}=-\frac{4}{3} \pi r^{3} \rho g \vec{e}_{z}$. Our goal here is to get this force by using surface integral directly.
a). We make the center of the ball on the z axis. Then the center has coordinate $(0,0, l)$. Parametrize the surface of the ball using the suitable angles θ, φ. (2
thank-you marks)
b). The pressure due to the water equals $p(h)=\rho g h$ where h is the depth of the point in the water. Use this expression and surface integral to get the exact buoyancy above. (4 thank-you marks)
Ans: (a). $\vec{r}(\theta, \varphi)=r \sin \theta \cos \varphi \vec{e}_{x}+r \sin \theta \sin \varphi \vec{e}_{y}+(l+r \cos \theta) \vec{e}_{z}$ (Notice here $\left.r \neq|\vec{r}|\right)$
(b). $d \vec{S}=\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial \varphi} d \theta d \varphi=r^{2} \sin \theta\left(\sin \theta \cos \varphi \vec{e}_{x}+\sin \theta \sin \varphi \vec{e}_{y}+\cos \theta \vec{e}_{z}\right) d \theta d \varphi$.

The force is $\vec{F}=-\int_{S} \rho g h d \vec{S}=$
$-\int_{0}^{2 \pi} \int_{0}^{\pi} \rho g(l+r \cos \theta) r^{2} \sin \theta\left(\sin \theta \cos \varphi \vec{e}_{x}+\sin \theta \sin \varphi \vec{e}_{y}+\cos \theta \vec{e}_{z}\right) d \theta d \varphi$
x , y components are 0 because of the φ integrals. The z component is:

$$
-\int_{0}^{2 \pi} \int_{0}^{\pi} \rho g(l+r \cos \theta) r^{2} \sin \theta \cos \theta d \theta d \varphi=-r^{3} \rho g \int_{0}^{2 \pi} \int_{0}^{\pi} \cos \theta \sin \theta \cos \theta d \theta d \varphi
$$

The answer is $-\frac{4 \pi r^{3} \rho}{3} g \vec{e}_{z}$
We have a negative sign for the force, because it is the water which pushes the ball. Then, at each point, the force points inside, but for $d \vec{S}$ we used the outer normal vector.

