Math 321 Exercise

Due: March 27/29

Your Name: Your Section:

Let's look at the applications of surface integral in physics.

- 1. Consider a ball with radius r deep in the water. Suppose the center of the ball is lbelow the water level. Archimedes principle says that 'Any object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object'. Suppose the density of the water is ρ and we know the volume of the ball is $4\pi r^3/3$ (you can verify this using volume integral). Then, the buoyancy should be $\frac{4}{3}\pi r^3\rho g$ and point up. If we create coordinate system at the water level surface, and make z axis point downward, then we would have $\vec{F}_b = -\frac{4}{3}\pi r^3 \rho g \vec{e}_z$. Our goal here is to get this force by using surface integral directly.
 - a). We make the center of the ball on the z axis. Then the center has coordinate (0,0,l). Parametrize the surface of the ball using the suitable angles θ, φ . (2) thank-you marks)
 - b). The pressure due to the water equals $p(h) = \rho g h$ where h is the depth of the point in the water. Use this expression and surface integral to get the exact buoyancy above. (4 thank-you marks)

Ans: (a). $\vec{r}(\theta,\varphi) = r \sin \theta \cos \varphi \vec{e}_x + r \sin \theta \sin \varphi \vec{e}_y + (l + r \cos \theta) \vec{e}_z$ (Notice here $r \neq |\vec{r}|$) (b). $d\vec{S} = \frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial \varphi} d\theta d\varphi = r^2 \sin \theta (\sin \theta \cos \varphi \vec{e}_x + \sin \theta \sin \varphi \vec{e}_y + \cos \theta \vec{e}_z) d\theta d\varphi$.

The force is $\vec{F} = -\int_{S} \rho g h d\vec{S} = -\int_{0}^{2\pi} \int_{0}^{\pi} \rho g (l + r \cos \theta) r^{2} \sin \theta (\sin \theta \cos \varphi \vec{e}_{x} + \sin \theta \sin \varphi \vec{e}_{y} + \cos \theta \vec{e}_{z}) d\theta d\varphi$ x, y components are 0 because of the φ integrals. The z component is:

$$-\int_0^{2\pi} \int_0^{\pi} \rho g(l+r\cos\theta) r^2 \sin\theta \cos\theta d\theta d\varphi = -r^3 \rho g \int_0^{2\pi} \int_0^{\pi} \cos\theta \sin\theta \cos\theta d\theta d\varphi$$

The answer is $-\frac{4\pi r^3 \rho}{3} g \vec{e}_z$

We have a negative sign for the force, because it is the water which pushes the ball. Then, at each point, the force points inside, but for $d\vec{S}$ we used the outer normal vector.