Part of Hints for Hw 9

Math 321

By Lei Li

Some easy problems

1. a). $(0 \leq \rho \leq 2,0 \leq \theta \leq 2 \pi, 0 \leq z \leq 4)$
b). $d V=\rho d \rho d \theta d z$
c). $\frac{256 \pi}{3}$
2. a). $\frac{25}{3}$
b). 3

1.5

\#2. For area, use $d S_{r}$ Area $=\int_{S} R^{2} \sin \theta d \theta d \varphi=\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} R^{2} \sin \theta d \theta=4 \pi R^{2}$
Volume: $V=\int_{\text {ball }} r^{2} \sin \theta d r d \theta d \varphi=\int_{0}^{R} d r \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} r^{2} \sin \theta d \theta=\frac{4}{3} \pi R^{3}$
\#4. $\vec{r}(r, \theta, \varphi)=(R+r \cos \theta) \cos \varphi \vec{e}_{x}+(R+r \cos \theta) \sin \varphi \vec{e}_{y}+r \sin \theta \vec{e}_{z}$. where $0 \leq r \leq a$ and $0 \leq \theta, \varphi \leq 2 \pi$
$d V=r(R+r \cos \theta) d r d \theta d \varphi$. The volume is $2 \pi^{2} R a^{2}$

1.6

\#1. The answers would be the same as in 1.5. However, the methods are a little different. You should calculate h_{i} first. However, $d \vec{S}=\vec{N} d q_{i} d q_{j}$ still. The only difference is how to calculate \vec{N} etc. I don't want to list the detail.
$\# 2 . \vec{r}=r \hat{r}$. For the curve, $\vec{r}=\rho(\theta) \hat{r} . d \vec{r}=\rho^{\prime}(\theta) d \theta \hat{r}+\rho(\theta) d \theta \hat{\theta} . L=\int_{\alpha}^{\beta} \sqrt{\rho^{\prime}(\theta)^{2}+\rho^{2}} d \theta$. For the area, $0 \leq r \leq \rho(\theta)$. We can get $\frac{\partial \vec{r}}{\partial r}=1 \hat{r}$ and $\frac{\partial \vec{r}}{\partial \theta}=r \hat{\theta} . d S=r d r d \theta . A=\int_{\alpha}^{\beta} \frac{1}{2} \rho^{2} d \theta$. \#3. Omitted. You can get the answers by yourself.

