Part of Hints for Hw 3

Math 321

Mar. 1. By Lei Li

2.3

1. $Q Q^{T}=I$, so $\operatorname{det}\left(Q Q^{T}\right)=\operatorname{det} I=1$ and then $\operatorname{det} Q * \operatorname{det} Q^{T}=(\operatorname{det} Q)^{2}=1 \cdot \operatorname{det} Q=1$ or -1

Second Part:Vector Calculus

1.1

1. $s(t)=\int_{0}^{t} \sqrt{4 z^{2}+81 z^{4}} d z=\int_{0}^{t} 2 z \sqrt{1+(81 / 4) z^{2}} d z=\left.\frac{4}{81} \frac{2}{3}\left(1+(81 / 4) z^{2}\right)^{3 / 2}\right|_{0} ^{t}$. Solve for t and plug back to get the curve parametrized by s
2. a). $5-2=3$
b). $7-3=4$

1.2

1. cylindrical helix. Vector tangent to the curve is $\vec{v}(t)=-a \omega \sin \omega t \vec{e}_{x}+a \omega \cos \omega t \vec{e}_{y}+b \vec{e}_{z}$. The tangent line is $\vec{R}(u)=r(t)+u \vec{v}(t)$ where u is changing in this tangent line.
2. Ellipse. Plug in $\vec{r}_{c}=x_{c} \vec{e}_{x}+y_{c} \vec{e}_{y} \vec{e}_{1}=\cos \alpha \vec{e}_{x}+\sin \alpha \vec{e}_{y}$ (You can also pick - for sin). Then, we must have $\vec{e}_{2}=-\sin \alpha \vec{e}_{x}+\cos \alpha \vec{e}_{y}$. Compare, and you can get x, y. Using $\cos ^{2} \theta+\sin ^{2} \theta=1$ you can eliminate θ and get $f(x, y)(\alpha$ is OK since it's known.)
3. Just use the formula $L=\int_{\theta_{1}}^{\theta_{2}}\left|\frac{d \vec{r}}{d \theta}\right| d \theta$ and $S=\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}}\left|\vec{r} \times \frac{d \vec{r}}{d \theta}\right| d \theta$
4. The first integral is 2π and the second one is 0

More:
b). $\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0}}\left(\frac{1}{2}-\frac{1}{3}\right)$
c). (i). One possible answer $x=r \cos \theta, y=r \sin \theta$ and $\vec{r}(\theta)=r \cos \theta \hat{i}+r \sin \theta \hat{j}$
(ii). 0 .
(iii). 2π. Actually, this is the same problem as the first integral in $\# 6$
(iv). $\frac{8}{3} r$
(v). $\vec{F}=0$
(vi). $d \vec{r}=-r \sin \theta d \theta \vec{e}_{x}+r \cos \theta d \theta \vec{e}_{y} . d \vec{r} \times \vec{B}=-r \cos ^{2} \theta \vec{e}_{z} d \theta$. The remaining work is easy.

