Part of Hints for Hw 3

Math 321

Mar. 1. By Lei Li

2.3

1. $QQ^T = I$, so $det(QQ^T) = detI = 1$ and then $detQ * detQ^T = (detQ)^2 = 1$. detQ = 1 or

Second Part: Vector Calculus

1.1

- 1. $s(t) = \int_0^t \sqrt{4z^2 + 81z^4} dz = \int_0^t 2z \sqrt{1 + (81/4)z^2} dz = \frac{4}{81} \frac{2}{3} (1 + (81/4)z^2)^{3/2} \Big|_0^t$. Solve for tand plug back to get the curve parametrized by s3. a). 5-2=3
- b).7 3 = 4

1.2

- 1. cylindrical helix. Vector tangent to the curve is $\vec{v}(t) = -a\omega \sin \omega t \vec{e}_x + a\omega \cos \omega t \vec{e}_y + b\vec{e}_z$. The tangent line is $\vec{R}(u) = r(t) + u\vec{v}(t)$ where u is changing in this tangent line.
- 2. Ellipse. Plug in $\vec{r}_c = x_c \vec{e}_x + y_c \vec{e}_y$ $\vec{e}_1 = \cos \alpha \vec{e}_x + \sin \alpha \vec{e}_y$ (You can also pick for sin). Then, we must have $\vec{e}_2 = -\sin\alpha\vec{e}_x + \cos\alpha\vec{e}_y$. Compare, and you can get x, y. Using $\cos^2 \theta + \sin^2 \theta = 1$ you can eliminate θ and get $f(x, y)(\alpha$ is OK since it's known.)
- 4. Just use the formula $L = \int_{\theta_1}^{\theta_2} \left| \frac{d\vec{r}}{d\theta} \right| d\theta$ and $S = \frac{1}{2} \int_{\theta_1}^{\theta_2} \left| \vec{r} \times \frac{d\vec{r}}{d\theta} \right| d\theta$ 6. The first integral is 2π and the second one is 0

More:

- b). $\frac{q_1q_2}{4\pi\varepsilon_0}(\frac{1}{2} \frac{1}{3})$
- c). (i). One possible answer $x = r \cos \theta, y = r \sin \theta$ and $\vec{r}(\theta) = r \cos \theta \hat{i} + r \sin \theta \hat{j}$
- (ii). 0.
- (iii). 2π . Actually, this is the same problem as the first integral in #6
- (iv). $\frac{8}{3}r$
- (v). $\vec{F} = 0$
- (vi). $d\vec{r} = -r \sin\theta d\theta \vec{e}_x + r \cos\theta d\theta \vec{e}_y$. $d\vec{r} \times \vec{B} = -r \cos^2\theta \vec{e}_z d\theta$. The remaining work is easy.