## Hw 7

Math 321

## 2.3

1. Suppose $Q$ is an orthogonal matrix with size $n \times n$, prove that $\operatorname{det} Q$ is either 1 or -1 .
2. Suppose $A$ is $3 \times 3$ matrix. $A_{i j}=0$ if $i>j$. Show that $\operatorname{det} A$ is product of the elements on the diagonal using both the definition $\operatorname{det}(A)=\varepsilon_{i j k} A_{i 1} A_{j 2} A_{k 3}$ and Laplace's expansion with repect to the first row.

## Second Part:Vector Calculus

## 1.1

1. Let $\vec{r}(t)=\left[t^{2}, 3 t^{3}\right]^{T}$. Find the arclength $s(t)$ and parametrize this curve using $s$.
2. For $\vec{r}(t)$, we have the arclength $s(t) . v=\frac{d s}{d t}$ is the speed and $\vec{v}=\frac{d \vec{r}}{d t}$ is the velocity. Use chain rule to differentiate $\vec{r}(t)=\vec{r}(s(t))$ and prove that $\left|\frac{d \vec{r}}{d s}\right|=\left|\frac{\vec{v}}{v}\right|=1$.
3. $\vec{r}(t)=[x(t), y(t), z(t)]^{T}=\left[t^{\sqrt{73}}, \cos ^{100}(2 t)-9 \sin (\sqrt{7} t), \tan \left(5 t^{1.2}\right)\right]^{T} . s(t)$ is the arclength. a). Find the integral $\int_{2}^{5}\left|\frac{d \vec{r}}{d s}\right| d s$. What's the length of this curve between $s\left(t_{1}\right)=2$ and $s\left(t_{2}\right)=5$ ?
b). Find the integral $\int_{3}^{7} \sqrt{(d x / d s)^{2}+(d y / d s)^{2}+(d z / d s)^{2}} d s$. What's the length of this curve between $s=3$ and $s=7$ ?

## 1.2

\#1, \#2 \#4 \#6
More:
a). Use equation (2) to convince yourself that $\int_{C} \vec{F} \cdot d \vec{r}$ is the work you learned in physics. b). A charged particle with charge $q_{1}$ is located at the origin. Another particle $B$ with charge $q_{2}$ is moving. The electric forces between the two particles acting on $B$ is
$\vec{F}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$. Suppose particle B is moving from $2 \hat{i}$ to $3 \hat{k}$ along one special curve. Find the work the electric force did during this process.
c). (i). Consider the circle centered at the origin with radius $r$ in $2 D$ plane. Suppose a particle is moving counterclockwisely from $A(r, 0)$ along the circle. Parametrize the trajectory of the particle for one ratation $(\vec{r}=x \hat{i}+y \hat{j})$.
(ii). If there is a force field in (i) which is $\vec{F}(\vec{r})=F_{0} \hat{i}$, calculate the work done on the particle.
(iii). If the force field in (i) is $\vec{F}(\vec{r})=\frac{-y}{x^{2}+y^{2}} \hat{i}+\frac{x}{x^{2}+y^{2}} \hat{j}$, do (ii) again.

More on next page
(iv). Also consider the circle. If the line density of the circle is $\lambda(\vec{r})=\left|\frac{x}{|\vec{r}|}\right|^{3}$. The total mass of the circle would be $m=\int_{C} \lambda(\vec{r})|d \vec{r}|$. Get this total mass.
(v). The circle is charged with charge line density $\lambda \vec{r}=\lambda_{0}$ which is a constant. There is electric field which is tangent to the circle at every point and the strength is
$|\vec{E}|=|x|^{2}+|y|^{3}$. The direction is counterclockwise. Calculate the total electric force acting on the circle.
(vi). Consider that the circle is a circuit with current $I$ in flowing counterclockwisely. We have magnetic field $\vec{B}=\frac{x}{r} \vec{e}_{x}$. The total force would be $\vec{F}=\int_{C}(I d \vec{r}) \times \vec{B}$. Calculate this force.

