Part of Hints for to Hw 3

Math 321

Mar. 1. By Lei Li

1.12

1. b). $2 \hat{i}$ or $-2 \hat{i}$ unit is $\mathrm{rad} / \mathrm{s}$

2.1

a). $\cos (\pi / 3)=1 / 2 \cdot \cos (\pi / 6)=\sqrt{3} / 2,0$ Thus $\overrightarrow{e^{\prime}}{ }_{1}$ has components $[1 / 2, \sqrt{3} / 2,0]^{T}$ with respect to old basis.
b). $[-\sqrt{6} / 4, \sqrt{2} / 4, \sqrt{2} / 2]^{T}$
c). Use cross product: $[\sqrt{6} / 4,-\sqrt{2} / 4, \sqrt{2} / 2]^{T}$
d). Rows are just the coordinates we have calculated.
$\mathrm{g})\left({ }^{*}\right)$. The inverse equals the transpose and you can figure out how to solve it.

2.2

\#4: $\sum_{i, j} x_{i} A_{i j} x_{j}$
\#5: Suppose Q_{1}, Q_{2} are orthogonal, then $Q=Q_{1} Q_{2} . Q^{T} Q=Q_{2}^{T} Q_{1}^{T} Q_{1} Q_{2}=Q_{2}^{T} Q_{2}=I$.
Similarly, $Q Q^{T}=I$. Geometrically, the composition of rotations reflections is another rotation plus refection.
** *
Basically, if we want to find the matrix A for a transformation T (reflection, rotation etc), you can find the coordinates for $T e_{1} \cdot T e_{2}, T e_{3}$ with respect to the basis e_{1}, e_{2}, e_{3}. Denote these coordinates as f_{1}, f_{2}, f_{3}. Then, $A=\left[f_{1}, f_{2}, f_{3}\right]$.
**
\#7:

$$
\left[\begin{array}{lll}
1 & & \\
& -1 & \\
& & 1
\end{array}\right]
$$

\#8

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

\#10

$$
\left[\begin{array}{ccc}
-1 & & \\
& 1 & \\
& & -1
\end{array}\right]
$$

$\# 11\left(^{*}\right)$: Bascially this problem is what $\# 9$ requires. However, I don't want to manipulate with Euler Angles. Below, I'll use my own method to solve it.
Actually, this question is not easy for me neither. Below, I'll derive a general case for you. If you can't understand, it's quite OK.
Suppose we have an orthonormal basis (to be convenient, I won't use arrows here)
$\left\{e_{1}, e_{2}, e_{3}\right\}$. Suppose $T e_{i}$ has coordiante y_{i} which is a column vector. Then, we would have $T\left[e_{1}, e_{2}, e_{3}\right]=\left[e_{1}, e_{2}, e_{3}\right]\left[y_{1}, y_{2}, y_{3}\right] . A=\left[y_{1}, y_{2}, y_{3}\right]$ is a 3×3 matrix.
A is called the matrix representation of T under this basis. For example, $\hat{i}, \hat{j}, \hat{k}$ is the basis. Then, reflection about $x-z$ plane would change them into $\hat{i},-\hat{j}, \hat{k}$. Then, we get the matrix in $\# 7$.
Ok, suppose we have a unit vector \hat{n}, which has coordinate $f_{3}=\left[n_{1}, n_{2}, n_{3}\right]^{T}$ with respect to e_{1}, e_{2}, e_{3}. We now rotate about \hat{n} right handed by angle α. The question is what is the matrix representation of the transform?
I'll denote this transform as T. To do this, I'll use a new bais $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ where $e_{3}^{\prime}=\hat{n}$. Under this new basis, the matrix representation is quite easy:

$$
B=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & \\
\sin \alpha & \cos \alpha & \\
& & 1
\end{array}\right]
$$

Then we actually have:

$$
T\left[e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right]=\left[e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right] B=\left[e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right]\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & \\
\sin \alpha & \cos \alpha & \\
& & 1
\end{array}\right]
$$

Let's assume e_{1}^{\prime} has coordinate f_{1} under the old basis and e_{2}^{\prime} has coordiante f_{2} under the old basis. Then we have:

$$
\left[e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right]=\left[e_{1}, e_{2}, e_{3}\right]\left[f_{1}, f_{2}, f_{3}\right]
$$

We actually have

$$
T\left[e_{1}, e_{2}, e_{3}\right]\left[f_{1}, f_{2}, f_{3}\right]=\left[e_{1}, e_{2}, e_{3}\right]\left[f_{1}, f_{2}, f_{3}\right] B
$$

However, $Q=\left[f_{1}, f_{2}, f_{3}\right]$ is orthogonal. Then we have:

$$
T\left[e_{1}, e_{2}, e_{3}\right]=\left[e_{1}, e_{2}, e_{3}\right] Q B Q^{T}
$$

We conclude that this rotation has matrix representation $Q B Q^{T}$ under the old basis. Recall $Q=\left[f_{1}, f_{2}, f_{3}\right]$, we finally derive that

$$
A=\cos \alpha\left(f_{1} f_{1}^{T}+f_{2} f_{2}^{T}\right)+\sin \alpha\left(f_{2} f_{1}^{T}-f_{1} f_{2}^{T}\right)+f_{3} f_{3}^{T}
$$

f_{3} is fixed and we have no choice. f_{1}, f_{2} have one degree of freedom. However, f_{1}, f_{2}, f_{3} must be orthonormal. But one can prove that the final answer has nothing to do how you choose f_{1}, f_{2}. The matrix for $\cos \alpha$ is symmetric and that for $\sin \alpha$ is antisymmetric.

For this problem, $f_{3}=[\sqrt{3} / 3, \sqrt{3} / 3, \sqrt{3} / 3]^{T}$. We can choose $f_{1}=[\sqrt{2} / 2,-\sqrt{2} / 2,0]^{T}$ and f_{2} can be obtained by taking the cross product. $f_{2}=[\sqrt{6} / 6, \sqrt{6} / 6,-\sqrt{6} / 3]^{T} . f_{1} f_{1}^{T}+f_{2} f_{2}^{T}$ becomes:

$$
A_{1}=\left[\begin{array}{ccc}
2 / 3 & 2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3 & -1 / 3 \\
-1 / 3 & -1 / 3 & 2 / 3
\end{array}\right]
$$

$f_{2} f_{1}^{T}-f_{1} f_{2}^{T}$ becomes:

$$
A_{2}=\left[\begin{array}{ccc}
0 & -\sqrt{3} / 3 & \sqrt{3} / 3 \\
\sqrt{3} / 3 & 0 & -\sqrt{3} / 3 \\
-\sqrt{3} / 3 & \sqrt{3} / 3 & 0
\end{array}\right]
$$

$f_{3} f_{3}^{T}$ becomes:

$$
A_{3}=\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

Final answer would be $\cos (\alpha) A_{1}+\sin (\alpha) A_{2}+A_{3}$

